Class AutoCorrelation
java.lang.Object
dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
dev.nm.stat.timeseries.linear.univariate.stationaryprocess.arma.AutoCorrelation
- All Implemented Interfaces:
Function<Vector,
,Double> BivariateRealFunction
,RealScalarFunction
Compute the Auto-Correlation Function (ACF) for an AutoRegressive Moving Average (ARMA) model, assuming that
EXt = 0.
This implementation solves the Yule-Walker equation.
The R equivalent functions are
ARMAacf
and TacvfAR
in package FitAR
.-
Nested Class Summary
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
Constructor Summary
ConstructorsConstructorDescriptionAutoCorrelation
(ARMAModel model, int nLags) Compute the auto-correlation function for an ARMA model. -
Method Summary
Methods inherited from class dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
get
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
evaluate
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
Constructor Details
-
AutoCorrelation
Compute the auto-correlation function for an ARMA model.- Parameters:
model
- an ARIMA modelnLags
- the number of lags
-
-
Method Details
-
evaluate
public double evaluate(double i, double j) Description copied from interface:BivariateRealFunction
Evaluate y = f(x1,x2).- Parameters:
i
- x1j
- x2- Returns:
- f(x1, x2)
-
evaluate
public double evaluate(double i) Get the i-th auto-correlation.- Parameters:
i
- the lag order- Returns:
- the i-th auto-correlation
-