Class SamplePartialAutoCorrelation
java.lang.Object
dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
dev.nm.stat.timeseries.linear.univariate.sample.SamplePartialAutoCorrelation
- All Implemented Interfaces:
Function<Vector,
,Double> BivariateRealFunction
,RealScalarFunction
This is the sample partial Auto-Correlation Function (PACF) for a univariate data set.
-
Nested Class Summary
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
Constructor Summary
ConstructorsConstructorDescriptionConstruct the sample PACF for a time series.Construct the sample PACF for a time series. -
Method Summary
Methods inherited from class dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
get
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
evaluate
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
Constructor Details
-
SamplePartialAutoCorrelation
Construct the sample PACF for a time series.- Parameters:
xt
- a time seriestype
- the auto-covariance type
-
SamplePartialAutoCorrelation
Construct the sample PACF for a time series.- Parameters:
xt
- a time series
-
-
Method Details
-
evaluate
public double evaluate(double x1, double x2) Description copied from interface:BivariateRealFunction
Evaluate y = f(x1,x2).- Parameters:
x1
- x1x2
- x2- Returns:
- f(x1, x2)
-
evaluate
public double evaluate(int lag) Compute the partial auto-correlation for lagk
.- Parameters:
lag
- the lag order; it must be > 1- Returns:
- ρ(k)
-