Class SampleAutoCovariance
java.lang.Object
dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
dev.nm.stat.timeseries.linear.univariate.AutoCovarianceFunction
dev.nm.stat.timeseries.linear.univariate.sample.SampleAutoCovariance
- All Implemented Interfaces:
Function<Vector,
,Double> BivariateRealFunction
,RealScalarFunction
This is the sample Auto-Covariance Function (ACVF) for a univariate data set.
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic enum
the available auto-covariance typesNested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
Constructor Summary
ConstructorsConstructorDescriptionConstruct the sample ACVF for a time series.Construct the sample ACVF for a time series. -
Method Summary
Methods inherited from class dev.nm.stat.timeseries.linear.univariate.AutoCovarianceFunction
get
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
evaluate
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
Constructor Details
-
SampleAutoCovariance
Construct the sample ACVF for a time series.- Parameters:
xt
- a time seriestype
- the auto-covariance type
-
SampleAutoCovariance
Construct the sample ACVF for a time series.- Parameters:
xt
- a time series
-
-
Method Details
-
evaluate
public double evaluate(int k) Compute the auto-covariance for lagk
.- Parameters:
k
- the lag order- Returns:
- γ(k)
-
evaluate
public double evaluate(double i, double j) Description copied from interface:BivariateRealFunction
Evaluate y = f(x1,x2).- Parameters:
i
- x1j
- x2- Returns:
- f(x1, x2)
-