Class VECM
- java.lang.Object
-
- dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma.VECM
-
- Direct Known Subclasses:
VECMLongrun
,VECMTransitory
public class VECM extends Object
A Vector Error Correction Model (VECM(p)) has one of the following specifications: Transitory: \[ \Delta Y_t = \mu + \Pi Y_{t-1} + \sum \left ( \Gamma_i Y_{t-1} \right ) + \Psi D_t + \epsilon_t, i = 1, 2, ..., p-1 \] or Long-run: \[ \Delta Y_t = \mu + \Pi Y_{t-p} + \sum \left ( \Gamma_i Y_{t-1} \right ) + \Psi D_t + \epsilon_t, i = 1, 2, ..., p-1 \] Yt, μ and εt are n-dimensional vectors. The impact matrix Π and the coefficients {Γi} of the lagged time series are n-by-n matrices; Dt is an m-by-1 vector which contains all exogenous variables at time t (excluding the intercept term), and its coefficients are represented by a n-by-m matrix ψ.- See Also:
- S. Johansen, "ch. 3-6, pp. 34-103," Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford, Oxford University Press, 1995.
- S. Johansen, "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, vol. 59, 1551-1580, 1991.
- A. Banerjee et al., Cointegration, Error Correction, and the Econometric Analysis of Non-Stationary Data, Oxford, Oxford University Press, 1993.
- Wikipedia: Error correction model
- Wikipedia: Johansen test
-
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description int
dimension()
Get the dimension of the multivariate time series.ImmutableMatrix[]
gamma()
Get the AR coefficients of the lagged differences;null
if p = 1ImmutableMatrix
gamma(int i)
Get the AR coefficient of the i-th lagged differences.ImmutableVector
mu()
Get the intercept vector.int
p()
Get the order of the VECM model.ImmutableMatrix
pi()
Get the impact matrix.ImmutableMatrix
psi()
Get the coefficients of the deterministic terms.ImmutableMatrix
sigma()
Get the white noise covariance matrix.
-
-
-
Constructor Detail
-
VECM
public VECM(Vector mu, Matrix pi, Matrix[] gamma, Matrix psi, Matrix sigma)
Construct a VECM(p) model.- Parameters:
mu
- the intercept (constant) vectorpi
- the impact matrixgamma
- the AR coefficients of the lagged differences;null
if p = 1psi
- the coefficients of the deterministic terms (excluding the intercept term)sigma
- the white noise covariance matrix
-
VECM
public VECM(VECM that)
Copy constructor.- Parameters:
that
- a VECM model
-
-
Method Detail
-
mu
public ImmutableVector mu()
Get the intercept vector.- Returns:
- the intercept (constant) vector
-
pi
public ImmutableMatrix pi()
Get the impact matrix.- Returns:
- the impact matrix
-
gamma
public ImmutableMatrix gamma(int i)
Get the AR coefficient of the i-th lagged differences.- Parameters:
i
- an index, counting from 1- Returns:
- the AR coefficient of the i-th lagged differences
-
gamma
public ImmutableMatrix[] gamma()
Get the AR coefficients of the lagged differences;null
if p = 1- Returns:
- the AR coefficients of the lagged differences;
null
if p = 1
-
psi
public ImmutableMatrix psi()
Get the coefficients of the deterministic terms.- Returns:
- the coefficients of the deterministic terms; could be
null
-
sigma
public ImmutableMatrix sigma()
Get the white noise covariance matrix.- Returns:
- the white noise covariance matrix
-
dimension
public int dimension()
Get the dimension of the multivariate time series.- Returns:
- the dimension of the multivariate time series
-
p
public int p()
Get the order of the VECM model.- Returns:
- the order of the VECM model
-
-