Class VARMAModel
- java.lang.Object
-
- dev.nm.stat.timeseries.linear.multivariate.arima.VARIMAXModel
-
- dev.nm.stat.timeseries.linear.multivariate.arima.VARIMAModel
-
- dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma.VARMAModel
-
public class VARMAModel extends VARIMAModel
A multivariate ARMA model, Xt, takes this form. \[ X_t = \mu + \Sigma \phi_i X_{t-i} + \Sigma \theta_j \epsilon_{t-j} + \epsilon_t, \]- See Also:
- "P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer, 2006."
- Wikipedia: Autoregressive moving average model
-
-
Constructor Summary
Constructors Constructor Description VARMAModel(Matrix[] phi, Matrix[] theta)
Construct a multivariate ARMA model with unit variance and zero-intercept (mu).VARMAModel(Matrix[] phi, Matrix[] theta, Matrix sigma)
Construct a multivariate ARMA model with zero-intercept (mu).VARMAModel(Vector mu, Matrix[] phi, Matrix[] theta)
Construct a multivariate ARMA model with unit variance.VARMAModel(Vector mu, Matrix[] phi, Matrix[] theta, Matrix sigma)
Construct a multivariate ARMA model.VARMAModel(VARMAModel that)
Copy constructor.VARMAModel(ARMAModel model)
Construct a multivariate model from a univariate ARMA model.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Vector
conditionalMean(Matrix arLags, Matrix maLags)
Compute the multivariate ARMA conditional mean, given all the lags.VARMAModel
getDemeanedModel()
Get the demeaned version of the time series model.Vector
unconditionalMean()
Compute the multivariate ARMA unconditional mean.-
Methods inherited from class dev.nm.stat.timeseries.linear.multivariate.arima.VARIMAModel
getVARMA
-
-
-
-
Constructor Detail
-
VARMAModel
public VARMAModel(Vector mu, Matrix[] phi, Matrix[] theta, Matrix sigma)
Construct a multivariate ARMA model.- Parameters:
mu
- the intercept (constant) vectorphi
- the AR coefficients (excluding the initial 1);null
if no AR coefficienttheta
- the MA coefficients (excluding the initial 1);null
if no MA coefficientsigma
- the white noise covariance matrix
-
VARMAModel
public VARMAModel(Vector mu, Matrix[] phi, Matrix[] theta)
Construct a multivariate ARMA model with unit variance.- Parameters:
mu
- the intercept (constant) vectorphi
- the AR coefficients (excluding the initial 1);null
if no AR coefficienttheta
- the MA coefficients (excluding the initial 1);null
if no MA coefficient
-
VARMAModel
public VARMAModel(Matrix[] phi, Matrix[] theta, Matrix sigma)
Construct a multivariate ARMA model with zero-intercept (mu).- Parameters:
phi
- the AR coefficients (excluding the initial 1);null
if no AR coefficienttheta
- the MA coefficients (excluding the initial 1);null
if no MA coefficientsigma
- the white noise covariance matrix
-
VARMAModel
public VARMAModel(Matrix[] phi, Matrix[] theta)
Construct a multivariate ARMA model with unit variance and zero-intercept (mu).- Parameters:
phi
- the AR coefficients (excluding the initial 1);null
if no AR coefficienttheta
- the MA coefficients (excluding the initial 1);null
if no MA coefficient
-
VARMAModel
public VARMAModel(ARMAModel model)
Construct a multivariate model from a univariate ARMA model.- Parameters:
model
- a univariate ARMA model
-
VARMAModel
public VARMAModel(VARMAModel that)
Copy constructor.- Parameters:
that
- a multivariate ARMA model
-
-
Method Detail
-
conditionalMean
public Vector conditionalMean(Matrix arLags, Matrix maLags)
Compute the multivariate ARMA conditional mean, given all the lags.- Parameters:
arLags
- the AR lagsmaLags
- the MA lags- Returns:
- the conditional mean
-
unconditionalMean
public Vector unconditionalMean()
Compute the multivariate ARMA unconditional mean.- Returns:
- the unconditional mean
-
getDemeanedModel
public VARMAModel getDemeanedModel()
Get the demeaned version of the time series model. \[ Y_t = (X_t - \mu) = \sum_{i=1}^p \phi_i (X_{t-i} - \mu) + \sum_{i=1}^q \theta_j \epsilon_{t-j} + \epsilon_t \] μ is the unconditional mean.- Returns:
- the demeaned time series
-
-