Class VARMAForecastOneStep
- java.lang.Object
-
- dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma.VARMAForecastOneStep
-
public class VARMAForecastOneStep extends Object
This is an implementation, adapted for an ARMA process, of the innovation algorithm, which is an efficient way of obtaining a one step least square linear predictor.- See Also:
- "P. J. Brockwell and R. A. Davis, "Chapter 5.3, Recursive Prediction of an ARMA(p,q) Process," Time Series: Theory and Methods, Springer, 2006."
- "P. J. Brockwell and R. A. Davis, "Eqs. 11.4.26, 11.4.27, 11.4.28, Chapter 11.4, Recursive Prediction of an ARMA(p,q) Process, Best Linear Predictors of Second Order Random Vectors," Time Series: Theory and Methods, Springer, 2006."
-
-
Constructor Summary
Constructors Constructor Description VARMAForecastOneStep(MultivariateIntTimeTimeSeries Xt, VARMAModel model)
Construct an instance ofInnovationAlgorithm
for a multivariate ARMA time series.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description ImmutableMatrix
covariance(int n)
Get the covariance matrix for prediction errors for \(\hat{x}_{n+1}\), made at time n.ImmutableMatrix
theta(int i, int j)
Get the coefficients of the linear predictor.ImmutableVector
xHat(int n)
Get the one-step prediction \(\hat{X}_{n+1} = P_{\mathfrak{S_n}}X_{n+1}\), made at time n.
-
-
-
Constructor Detail
-
VARMAForecastOneStep
public VARMAForecastOneStep(MultivariateIntTimeTimeSeries Xt, VARMAModel model)
Construct an instance ofInnovationAlgorithm
for a multivariate ARMA time series.- Parameters:
Xt
- an m-dimensional time seriesmodel
- the ARMA model
-
-
Method Detail
-
xHat
public ImmutableVector xHat(int n)
Get the one-step prediction \(\hat{X}_{n+1} = P_{\mathfrak{S_n}}X_{n+1}\), made at time n.- Parameters:
n
- time, ranging from 0 to T, the end of observation time- Returns:
- the one-step prediction \(\hat{X}_{n+1}\)
-
theta
public ImmutableMatrix theta(int i, int j)
Get the coefficients of the linear predictor.- Parameters:
i
-i
, ranging from 1 to tj
-j
, ranging from 1 to t- Returns:
- Θ[i][j]
-
covariance
public ImmutableMatrix covariance(int n)
Get the covariance matrix for prediction errors for \(\hat{x}_{n+1}\), made at time n.- Parameters:
n
- time, ranging from 0 to T, the end of observation time- Returns:
- the covariance matrix for prediction errors at time n
-
-