Class VARMAAutoCovariance
java.lang.Object
dev.nm.analysis.function.matrix.R2toMatrix
dev.nm.stat.timeseries.linear.multivariate.MultivariateAutoCovarianceFunction
dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma.VARMAAutoCovariance
- All Implemented Interfaces:
Function<Vector,
,Matrix> RntoMatrix
Compute the Auto-CoVariance Function (ACVF) for a vector AutoRegressive Moving Average (ARMA) model, assuming that
EXt = 0.
This implementation solves the Yule-Walker equation.
The R equivalent functions are
ARMAacf
and TacvfAR
in package FitAR
.-
Nested Class Summary
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
Constructor Summary
ConstructorsConstructorDescriptionVARMAAutoCovariance
(VARMAModel model, int nLags) Compute the auto-covariance function for a vector ARMA model. -
Method Summary
Methods inherited from class dev.nm.stat.timeseries.linear.multivariate.MultivariateAutoCovarianceFunction
get
Methods inherited from class dev.nm.analysis.function.matrix.R2toMatrix
dimensionOfDomain, dimensionOfRange, evaluate
-
Constructor Details
-
VARMAAutoCovariance
Compute the auto-covariance function for a vector ARMA model. To solve Eq. 11.3.15, we "expand" the (p+1) matrix equations into (p+1)*m*m linear equations. m is the dimension of Γ (ACVF).- Parameters:
model
- an ARIMA modelnLags
- the number of lags
-
-
Method Details
-
evaluate
Description copied from class:R2toMatrix
Evaluate f(x1, x2) = A.- Specified by:
evaluate
in classR2toMatrix
- Parameters:
i
-x1
j
-x2
- Returns:
f(x1, x2)
-
evaluate
Get the i-th auto-covariance matrix.- Parameters:
i
- the lag order- Returns:
- the i-th auto-covariance matrix
-