Class VARIMAModel

  • Direct Known Subclasses:
    VARMAModel

    public class VARIMAModel
    extends VARIMAXModel
    An ARIMA(p, d, q) process, Yt, is such that \[ X_t = (1 - L)^d Y_t \] where L is the lag operator, d the order of difference, Xt an ARMA(p, q) process, for which \[ X_t = \mu + \Sigma \phi_i X_{t-i} + \Sigma \theta_j \epsilon_{t-j} + \epsilon_t, \] Xt, μ and εt are n-dimensional vectors. The (n * n) matrices \({\phi_i}\) and \({\theta_j}\) are the AR and MA coefficients respectively.
    See Also:
    Wikipedia: Autoregressive integrated moving average
    • Constructor Detail

      • VARIMAModel

        public VARIMAModel​(Vector mu,
                           Matrix[] phi,
                           int d,
                           Matrix[] theta,
                           Matrix sigma)
        Construct a multivariate ARIMA model.
        Parameters:
        mu - the intercept (constant) vector
        phi - the AR coefficients (excluding the initial 1); null if no AR coefficient
        d - the order of integration
        theta - the MA coefficients (excluding the initial 1); null if no MA coefficient
        sigma - the white noise covariance matrix
      • VARIMAModel

        public VARIMAModel​(Vector mu,
                           Matrix[] phi,
                           int d,
                           Matrix[] theta)
        Construct a multivariate ARIMA model with unit variance.
        Parameters:
        mu - the intercept (constant) vector
        phi - the AR coefficients (excluding the initial 1); null if no AR coefficient
        d - the order of integration
        theta - the MA coefficients (excluding the initial 1); null if no MA coefficient
      • VARIMAModel

        public VARIMAModel​(Matrix[] phi,
                           int d,
                           Matrix[] theta,
                           Matrix sigma)
        Construct a multivariate ARIMA model with zero-intercept (mu).
        Parameters:
        phi - the AR coefficients (excluding the initial 1); null if no AR coefficient
        d - the order of integration
        theta - the MA coefficients (excluding the initial 1); null if no MA coefficient
        sigma - the white noise covariance matrix
      • VARIMAModel

        public VARIMAModel​(Matrix[] phi,
                           int d,
                           Matrix[] theta)
        Construct a multivariate ARIMA model with unit variance and zero-intercept (mu).
        Parameters:
        phi - the AR coefficients (excluding the initial 1); null if no AR coefficient
        d - the order of integration
        theta - the MA coefficients (excluding the initial 1); null if no MA coefficient
      • VARIMAModel

        public VARIMAModel​(ARIMAModel model)
        Construct a multivariate model from a univariate ARIMA model.
        Parameters:
        model - a univariate ARIMA model
      • VARIMAModel

        public VARIMAModel​(VARIMAModel that)
        Copy constructor.
        Parameters:
        that - a multivariate ARIMA model
    • Method Detail

      • getVARMA

        public VARMAModel getVARMA()
        Get the ARMA part of this ARIMA model, essentially ignoring the differencing.
        Returns:
        the ARMA part