Class GLMResiduals
- java.lang.Object
-
- dev.nm.stat.regression.linear.residualanalysis.LMResiduals
-
- dev.nm.stat.regression.linear.glm.GLMResiduals
-
- Direct Known Subclasses:
QuasiGLMResiduals
public class GLMResiduals extends LMResiduals
Residual analysis of the results of a Generalized Linear Model regression. Over-dispersion occurs when the observed variance of the data is larger than the predicted variance. Deviance measures the goodness-of-fit of a model
-
-
Constructor Summary
Constructors Constructor Description GLMResiduals(GLMProblem problem, Vector fitted)
Performs residual analysis for a GLM regression.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
deviance()
Gets the (total) deviance.ImmutableVector
devianceResiduals()
Gets the deviances residuals.double[]
deviances()
Gets the deviances of the observations.double
overdispersion()
Gets the over-dispersion.-
Methods inherited from class dev.nm.stat.regression.linear.residualanalysis.LMResiduals
AR2, df, fitted, Fstat, getProblem, hHat, leverage, R2, residuals, RSS, standardized, stderr, studentized, TSS, weightedFittedValues, weightedResiduals
-
-
-
-
Constructor Detail
-
GLMResiduals
public GLMResiduals(GLMProblem problem, Vector fitted)
Performs residual analysis for a GLM regression.- Parameters:
problem
- the GLM problem to be solvedfitted
- the fitted values
-
-
Method Detail
-
overdispersion
public double overdispersion()
Gets the over-dispersion.- Returns:
- the over-dispersion
-
deviances
public double[] deviances()
Gets the deviances of the observations.- Returns:
- the deviances
-
deviance
public double deviance()
Gets the (total) deviance.- Returns:
- the (total) deviance
-
devianceResiduals
public ImmutableVector devianceResiduals()
Gets the deviances residuals.- Returns:
- the deviances residuals
-
-