Uses of Interface
dev.nm.stat.random.Seedable
Packages that use Seedable
Package
Description
-
Uses of Seedable in dev.nm.stat.distribution.discrete
Classes in dev.nm.stat.distribution.discrete that implement SeedableModifier and TypeClassDescriptionclass
A random sampler that is constructed ad-hoc from a list of values and their probabilities. -
Uses of Seedable in dev.nm.stat.evt.evd.bivariate
Subinterfaces of Seedable in dev.nm.stat.evt.evd.bivariateModifier and TypeInterfaceDescriptioninterface
Bivariate Extreme Value (BEV) distribution is the joint distribution of component-wise maxima of two-dimensional iid random vectors.Classes in dev.nm.stat.evt.evd.bivariate that implement SeedableModifier and TypeClassDescriptionclass
class
The bivariate asymmetric logistic model.class
The asymmetric mixed model.class
The bivariate asymmetric negative logistic model.class
The bilogistic model.class
The Coles-Tawn model.class
The Husler-Reiss model.class
The bivariate logistic model.class
The negative bilogistic model.class
The bivariate negative logistic model. -
Uses of Seedable in dev.nm.stat.evt.evd.univariate.rng
Classes in dev.nm.stat.evt.evd.univariate.rng that implement SeedableModifier and TypeClassDescriptionclass
Generate random numbers according to a given univariate extreme value distribution, by inverse transform sampling. -
Uses of Seedable in dev.nm.stat.evt.markovchain
Classes in dev.nm.stat.evt.markovchain that implement SeedableModifier and TypeClassDescriptionclass
Simulation of first order extreme value Markov chains such that each pair of consecutive values has the dependence structure of given bivariate extreme value distributions. -
Uses of Seedable in dev.nm.stat.evt.timeseries
Classes in dev.nm.stat.evt.timeseries that implement SeedableModifier and TypeClassDescriptionclass
Generate random numbers based on a given MARMA model. -
Uses of Seedable in dev.nm.stat.hmm
Classes in dev.nm.stat.hmm that implement SeedableModifier and TypeClassDescriptionclass
class
In a (discrete) hidden Markov model, the state is not directly visible, but output, dependent on the state, is visible. -
Uses of Seedable in dev.nm.stat.hmm.discrete
Classes in dev.nm.stat.hmm.discrete that implement SeedableModifier and TypeClassDescriptionclass
This implementation trains an HMM model by observations using the Baum–Welch algorithm.class
This is the discrete hidden Markov model as defined by Rabiner. -
Uses of Seedable in dev.nm.stat.hmm.mixture
Classes in dev.nm.stat.hmm.mixture that implement SeedableModifier and TypeClassDescriptionclass
This is the mixture hidden Markov model (HMM).class
The EM algorithm is used to find the unknown parameters of a hidden Markov model (HMM) by making use of the forward-backward algorithm. -
Uses of Seedable in dev.nm.stat.markovchain
Classes in dev.nm.stat.markovchain that implement SeedableModifier and TypeClassDescriptionclass
This is a time-homogeneous Markov chain with a finite state space. -
Uses of Seedable in dev.nm.stat.random.rng
Classes in dev.nm.stat.random.rng with type parameters of type SeedableModifier and TypeClassDescriptionclass
ConstantSeeder<T extends Seedable>
A wrapper that seeds each given seedable random number generator with the given seed(s). -
Uses of Seedable in dev.nm.stat.random.rng.concurrent.cache
Subinterfaces of Seedable in dev.nm.stat.random.rng.concurrent.cacheModifier and TypeInterfaceDescriptionstatic interface
Defines a generic generator of typeT
.Classes in dev.nm.stat.random.rng.concurrent.cache that implement SeedableModifier and TypeClassDescriptionclass
A generic wrapper that makes an underlying item generator thread-safe by caching generated items in a concurrently-accessible list.class
This is a fast thread-safe wrapper for random long generators.class
This is a fast thread-safe wrapper for random number generators.class
This is a fast thread-safe wrapper for random vector generators. -
Uses of Seedable in dev.nm.stat.random.rng.concurrent.context
Classes in dev.nm.stat.random.rng.concurrent.context that implement SeedableModifier and TypeClassDescriptionclass
ContextRNG<T>
This uniform number generator generates independent sequences of random numbers per context.class
This uniform number generator generates independent sequences of random numbers per thread, hence thread-safe.class
This random number generator generates independent sequences of random numbers per thread, hence thread-safe. -
Uses of Seedable in dev.nm.stat.random.rng.multivariate
Subinterfaces of Seedable in dev.nm.stat.random.rng.multivariateModifier and TypeInterfaceDescriptioninterface
A (pseudo) multivariate random number generator samples a random vector from a multivariate distribution.Classes in dev.nm.stat.random.rng.multivariate that implement SeedableModifier and TypeClassDescriptionclass
A burn-in random number generator discards the first M samples.class
Generates uniformly distributed points on the surface of a hypersphere.class
An i.i.d.class
A multinomial distribution puts N objects into K bins according to the bins' probabilities.class
A multivariate Normal random vector is said to be p-variate normally distributed if every linear combination of its p components has a univariate normal distribution.class
Thinning is a scheme that returns every m-th item, discarding the last m-1 items for each draw.class
This random vector generator uniformly samples points over a box region. -
Uses of Seedable in dev.nm.stat.random.rng.multivariate.mcmc.hybrid
Classes in dev.nm.stat.random.rng.multivariate.mcmc.hybrid that implement SeedableModifier and TypeClassDescriptionclass
Hybrid Monte Carlo, or Hamiltonian Monte Carlo, is a method that combines the traditional Metropolis algorithm, with molecular dynamics simulation.class
A simple decorator which will randomly vary dt between each sample.class
This class implements a hybrid MCMC algorithm.class
A multi-point Hybrid Monte Carlo is an extension of HybridMCMC, where during the proposal generation instead of considering only the last configuration after the dynamics simulation, we pick a proposal from a window of the last M configurations. -
Uses of Seedable in dev.nm.stat.random.rng.multivariate.mcmc.metropolis
Classes in dev.nm.stat.random.rng.multivariate.mcmc.metropolis that implement SeedableModifier and TypeClassDescriptionclass
The Metropolis algorithm is a Markov Chain Monte Carlo algorithm, which requires only a function f proportional to the PDF from which we wish to sample.class
This basic Metropolis implementation assumes using symmetric proposal function.class
A generalization of the Metropolis algorithm, which allows asymmetric proposal functions.class
A variation of Metropolis, that uses the estimated covariance of the target distribution in the proposal distribution, based on a paper by Vihola (2011). -
Uses of Seedable in dev.nm.stat.random.rng.univariate
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariateModifier and TypeInterfaceDescriptioninterface
A (pseudo) random number generator that generates a sequence oflong
s that lack any pattern and are uniformly distributed.interface
A (pseudo) random number generator is an algorithm designed to generate a sequence of numbers that lack any pattern.Classes in dev.nm.stat.random.rng.univariate that implement SeedableModifier and TypeClassDescriptionclass
A Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success, p, is the same every time the experiment is conducted.class
This random number generator samples from the binomial distribution.class
A burn-in random number generator discards the first M samples.class
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, Smirnov transform, golden rule, etc.) is a basic method for pseudo-random number sampling, i.e.class
This random number generator samples from the log-normal distribution.class
This random number generator samples from the Rayleigh distribution using the inverse transform sampling method.class
Thinning is a scheme that returns every m-th item, discarding the last m-1 items for each draw.class
This random number generator samples from the Weibull distribution using the inverse transform sampling method. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.beta
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariate.betaModifier and TypeInterfaceDescriptioninterface
This is a random number generator that generates random deviates according to the Beta distribution.Classes in dev.nm.stat.random.rng.univariate.beta that implement SeedableModifier and TypeClassDescriptionclass
Cheng, 1978, is a new rejection method for generating beta variates.class
Deprecated. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.exp
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariate.expModifier and TypeInterfaceDescriptioninterface
This is a random number generator that generates random deviates according to the exponential distribution.Classes in dev.nm.stat.random.rng.univariate.exp that implement SeedableModifier and TypeClassDescriptionclass
This is a pseudo random number generator that samples from the exponential distribution using the inverse transform sampling method.class
This implements the ziggurat algorithm to sample from the exponential distribution. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.gamma
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariate.gammaModifier and TypeInterfaceDescriptioninterface
This is a random number generator that generates random deviates according to the Gamma distribution.Classes in dev.nm.stat.random.rng.univariate.gamma that implement SeedableModifier and TypeClassDescriptionclass
Deprecated.There exist much more efficient algorithms.class
Kundu-Gupta propose a very convenient way to generate gamma random variables using generalized exponential distribution, when the shape parameter lies between 0 and 1.class
Marsaglia-Tsang is a procedure for generating a gamma variate as the cube of a suitably scaled normal variate.class
Xi, Tan and Liu proposed two simple algorithms to generate gamma random numbers based on the ratio-of-uniforms method and logarithmic transformations of gamma random variable.class
Xi, Tan and Liu proposed two simple algorithms to generate gamma random numbers based on the ratio-of-uniforms method and logarithmic transformations of gamma random variable. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.normal
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariate.normalModifier and TypeInterfaceDescriptioninterface
This is a random number generator that generates random deviates according to the standard Normal distribution.Classes in dev.nm.stat.random.rng.univariate.normal that implement SeedableModifier and TypeClassDescriptionclass
The Box-Muller transform (by George Edward Pelham Box and Mervin Edgar Muller 1958) is a pseudo-random number sampling method for generating pairs of independent standard normally distributed (zero expectation, unit variance) random numbers, given a source of uniformly distributed random numbers.class
class
The polar method (attributed to George Marsaglia, 1964) is a pseudo-random number sampling method for generating a pair of independent standard normal random variables.class
This is a random number generator that generates random deviates according to the Normal distribution.class
An alias forZignor2005
to provide a default implementation for sampling from the standard Normal distribution.class
The Ziggurat algorithm is an algorithm for pseudo-random number sampling from the Normal distribution.class
This is an improved version of the Ziggurat algorithm as proposed in the reference. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.normal.truncated
Classes in dev.nm.stat.random.rng.univariate.normal.truncated that implement SeedableModifier and TypeClassDescriptionclass
A random variate x defined as \[ x = \Phi^{-1}( \Phi(\alpha) + U\cdot(\Phi(\beta)-\Phi(\alpha)))\sigma + \mu \] with \(\Phi\) the cumulative distribution function and \(\Phi^{-1}\) its inverse, U a uniform random number on (0, 1), follows the distribution truncated to the range (a, b). -
Uses of Seedable in dev.nm.stat.random.rng.univariate.poisson
Classes in dev.nm.stat.random.rng.univariate.poisson that implement SeedableModifier and TypeClassDescriptionclass
This is a random number generator that generates random deviates according to the Poisson distribution. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.uniform
Classes in dev.nm.stat.random.rng.univariate.uniform that implement SeedableModifier and TypeClassDescriptionclass
Marsaglia's MWC256 (also known as MWC8222) is a multiply-with-carry generator.class
SHR0 is a simple uniform random number generator.class
SHR3 is a 3-shift-register generator with period 2^32-1.class
A pseudo uniform random number generator samples numbers from the unit interval, [0, 1], in such a way that there are equal probabilities of them falling in any same length sub-interval. -
Uses of Seedable in dev.nm.stat.random.rng.univariate.uniform.linear
Subinterfaces of Seedable in dev.nm.stat.random.rng.univariate.uniform.linearModifier and TypeInterfaceDescriptioninterface
A linear congruential generator (LCG) produces a sequence of pseudo-random numbers based on a linear recurrence relation.Classes in dev.nm.stat.random.rng.univariate.uniform.linear that implement SeedableModifier and TypeClassDescriptionclass
A composite generator combines a number of simpleLinearCongruentialGenerator
, such asLehmer
, to form one longer period generator by first summing values and then taking modulus.class
This is the uniform random number generator recommended by L'Ecuyer in 1996.class
Lehmer proposed a general linear congruential generator that generates pseudo-random numbers in [0, 1].class
A Multiple Recursive Generator (MRG) is a linear congruential generator which takes this form: -
Uses of Seedable in dev.nm.stat.random.rng.univariate.uniform.mersennetwister
Classes in dev.nm.stat.random.rng.univariate.uniform.mersennetwister that implement SeedableModifier and TypeClassDescriptionclass
Mersenne Twister is one of the best pseudo random number generators available. -
Uses of Seedable in dev.nm.stat.random.sampler.resampler
Subinterfaces of Seedable in dev.nm.stat.random.sampler.resamplerModifier and TypeInterfaceDescriptioninterface
This is the interface of a re-sampler method for objects.interface
This is the interface of a re-sampler method. -
Uses of Seedable in dev.nm.stat.random.sampler.resampler.bootstrap
Classes in dev.nm.stat.random.sampler.resampler.bootstrap that implement SeedableModifier and TypeClassDescriptionclass
This is the classical bootstrap method described in the reference.class
This is the classical bootstrap method described in the reference. -
Uses of Seedable in dev.nm.stat.random.sampler.resampler.bootstrap.block
Classes in dev.nm.stat.random.sampler.resampler.bootstrap.block that implement SeedableModifier and TypeClassDescriptionclass
This class implements the stationary and circular block bootstrapping method with optimized block length.class
This class implements the stationary and circular block bootstrapping method with optimized block length. -
Uses of Seedable in dev.nm.stat.random.sampler.resampler.multivariate
Subinterfaces of Seedable in dev.nm.stat.random.sampler.resampler.multivariateModifier and TypeInterfaceDescriptioninterface
This is the interface of a multivariate re-sampler method.Classes in dev.nm.stat.random.sampler.resampler.multivariate that implement Seedable -
Uses of Seedable in dev.nm.stat.stochasticprocess.multivariate.random
Subinterfaces of Seedable in dev.nm.stat.stochasticprocess.multivariate.randomModifier and TypeInterfaceDescriptioninterface
This interface defines a generator to construct random realizations from a multivariate stochastic process.Classes in dev.nm.stat.stochasticprocess.multivariate.random that implement SeedableModifier and TypeClassDescriptionclass
This is the Random Walk construction of a multivariate Brownian motion.class
This interface represents a multivariate random process a.k.a.class
This class generates random realizations from a multivariate random/stochastic process.class
This is the Random Walk construction of a multivariate stochastic process per SDE specification. -
Uses of Seedable in dev.nm.stat.stochasticprocess.univariate.random
Subinterfaces of Seedable in dev.nm.stat.stochasticprocess.univariate.randomModifier and TypeInterfaceDescriptioninterface
This interface defines a generator to construct random realizations from a univariate stochastic process.Classes in dev.nm.stat.stochasticprocess.univariate.random that implement SeedableModifier and TypeClassDescriptionclass
This interface represents a univariate random process a.k.a.class
This class generates random realizations from a random/stochastic process.class
This is the Random Walk construction of a stochastic process per SDE specification. -
Uses of Seedable in dev.nm.stat.stochasticprocess.univariate.sde.process.ou
Classes in dev.nm.stat.stochasticprocess.univariate.sde.process.ou that implement SeedableModifier and TypeClassDescriptionclass
This class simulates a discrete path of a univariate Ornstein-Uhlenbeck (OU) process. -
Uses of Seedable in dev.nm.stat.test.distribution.pearson
Classes in dev.nm.stat.test.distribution.pearson that implement SeedableModifier and TypeClassDescriptionclass
Algorithm AS 159 accepts a table shape (the number of rows and columns), and two vectors, the lists of row and column sums. -
Uses of Seedable in dev.nm.stat.timeseries.linear.multivariate.arima
Classes in dev.nm.stat.timeseries.linear.multivariate.arima that implement SeedableModifier and TypeClassDescriptionclass
This class simulates a multivariate ARIMA process. -
Uses of Seedable in dev.nm.stat.timeseries.linear.univariate.arima
Classes in dev.nm.stat.timeseries.linear.univariate.arima that implement SeedableModifier and TypeClassDescriptionclass
This class simulates an ARIMA (AutoRegressive Integrated Moving Average) process. -
Uses of Seedable in dev.nm.stat.timeseries.linear.univariate.stationaryprocess.garch
Classes in dev.nm.stat.timeseries.linear.univariate.stationaryprocess.garch that implement SeedableModifier and TypeClassDescriptionclass
This class simulates the GARCH models of this form. -
Uses of Seedable in tech.nmfin.portfoliooptimization.lai2010.ceta.npeb.resampler
Classes in tech.nmfin.portfoliooptimization.lai2010.ceta.npeb.resampler that implement SeedableModifier and TypeClassDescriptionclass
Creates re-samplers that do re-sampling for the whole group of stocks together. -
Uses of Seedable in tech.nmfin.trend.kst1995
Classes in tech.nmfin.trend.kst1995 that implement SeedableModifier and TypeClassDescriptionclass
Implements the Knight-Satchell-Tran model of financial asset returns.
Cheng1978
is a much better algorithm.