Class DiscreteHMM

All Implemented Interfaces:
RandomNumberGenerator, Seedable
Direct Known Subclasses:
BaumWelch

public class DiscreteHMM extends HiddenMarkovModel
This is the discrete hidden Markov model as defined by Rabiner.
  • Constructor Details

    • DiscreteHMM

      public DiscreteHMM(Vector PI, Matrix A, Matrix B)
      Constructs a discrete hidden Markov model.
      Parameters:
      PI - the initial state probabilities
      A - the state transition probabilities
      B - the conditional probabilities of the observation symbols: rows correspond to state; columns corresponds symbols
    • DiscreteHMM

      public DiscreteHMM(DiscreteHMM model)
      Copy constructor.
      Parameters:
      model - a HiddenMarkovModel
  • Method Details

    • B

      public ImmutableMatrix B()
      Gets the conditional probabilities of the observation symbols: rows correspond to state; columns corresponds symbols.
      Returns:
      the observation symbol probabilities
    • nSymbols

      public int nSymbols()
      Gets the number of observation symbols per state.
      Returns:
      the number of observation symbols per state
    • density

      public double density(int state, double observation)
      Gets the (conditional) probability mass of making an observation in a particular state.
      Specified by:
      density in class HiddenMarkovModel
      Parameters:
      state - the hidden state label, counting from 1
      observation - the observation value
      Returns:
      the probability density/mass