Interface MultivariateProbabilityDistribution
-
- All Known Subinterfaces:
BivariateEVD
,BivariateProbabilityDistribution
- All Known Implementing Classes:
AbstractBivariateEVD
,AbstractBivariateProbabilityDistribution
,BivariateEVDAsymmetricLogistic
,BivariateEVDAsymmetricMixed
,BivariateEVDAsymmetricNegativeLogistic
,BivariateEVDBilogistic
,BivariateEVDColesTawn
,BivariateEVDHuslerReiss
,BivariateEVDLogistic
,BivariateEVDNegativeBilogistic
,BivariateEVDNegativeLogistic
,DirichletDistribution
,MultinomialDistribution
,MultivariateNormalDistribution
,MultivariateTDistribution
public interface MultivariateProbabilityDistribution
A multivariate or joint probability distribution for X, Y, ... is a probability distribution that gives the probability that each of X, Y, ... falls in any particular range or discrete set of values specified for that variable.
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
cdf(Vector x)
Gets the cumulative probability F(x) = Pr(X ≤ x).Matrix
covariance()
Gets the covariance matrix of this distribution.double
density(Vector x)
The density function, which, if exists, is the derivative of F.double
entropy()
Gets the entropy of this distribution.Vector
mean()
Gets the mean of this distribution.Vector
mode()
Gets the mode of this distribution.double
moment(Vector t)
The moment generating function is the expected value of etX.
-
-
-
Method Detail
-
cdf
double cdf(Vector x)
Gets the cumulative probability F(x) = Pr(X ≤ x).- Parameters:
x
- x- Returns:
- F(x) = Pr(X ≤ x)
-
density
double density(Vector x)
The density function, which, if exists, is the derivative of F. It describes the density of probability at each point in the sample space.f(x) = dF(X) / dx
This may not always exist. For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.- Parameters:
x
- x- Returns:
- f(x)
-
mean
Vector mean()
Gets the mean of this distribution.- Returns:
- the mean
-
mode
Vector mode()
Gets the mode of this distribution.- Returns:
- the mean
-
covariance
Matrix covariance()
Gets the covariance matrix of this distribution.- Returns:
- the covariance
-
entropy
double entropy()
Gets the entropy of this distribution.- Returns:
- the entropy
- See Also:
- Wikipedia: Entropy (information theory)
-
moment
double moment(Vector t)
The moment generating function is the expected value of etX. That is,E(etX)
This may not always exist.- Parameters:
t
- t- Returns:
- E(exp(tX))
- See Also:
- Wikipedia: Moment-generating function
-
-