Class AbstractBivariateProbabilityDistribution
- java.lang.Object
-
- dev.nm.stat.distribution.multivariate.AbstractBivariateProbabilityDistribution
-
- All Implemented Interfaces:
BivariateProbabilityDistribution
,MultivariateProbabilityDistribution
- Direct Known Subclasses:
AbstractBivariateEVD
public abstract class AbstractBivariateProbabilityDistribution extends Object implements BivariateProbabilityDistribution
-
-
Constructor Summary
Constructors Constructor Description AbstractBivariateProbabilityDistribution()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
cdf(Vector x)
Gets the cumulative probability F(x) = Pr(X ≤ x).double
density(Vector x)
The density function, which, if exists, is the derivative of F.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface dev.nm.stat.distribution.multivariate.BivariateProbabilityDistribution
cdf, density
-
Methods inherited from interface dev.nm.stat.distribution.multivariate.MultivariateProbabilityDistribution
covariance, entropy, mean, mode, moment
-
-
-
-
Method Detail
-
cdf
public double cdf(Vector x)
Description copied from interface:MultivariateProbabilityDistribution
Gets the cumulative probability F(x) = Pr(X ≤ x).- Specified by:
cdf
in interfaceMultivariateProbabilityDistribution
- Parameters:
x
- x- Returns:
- F(x) = Pr(X ≤ x)
-
density
public double density(Vector x)
Description copied from interface:MultivariateProbabilityDistribution
The density function, which, if exists, is the derivative of F. It describes the density of probability at each point in the sample space.f(x) = dF(X) / dx
This may not always exist. For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.- Specified by:
density
in interfaceMultivariateProbabilityDistribution
- Parameters:
x
- x- Returns:
- f(x)
-
-