Package dev.nm.solver
Interface Optimizer<P,S>
-
- Type Parameters:
P
- the optimization problem typeS
- the optimization solution type
- All Known Subinterfaces:
BoxMinimizer<P,S>
,CetaMaximizer
,ConstrainedMinimizer<P,S>
,IPMinimizer<T,S>
,IterativeC2Minimizer
,IterativeMinimizer<P>
,LineSearch
,LPSimplexSolver<P>
,LPSolver<P,S>
,Maxmizer<P,S>
,Minimizer<P,S>
,MinMaxMinimizer<T>
,MultivariateMinimizer<P,S>
,QPMinimizer
,UnivariateMinimizer
- All Known Implementing Classes:
BFGSMinimizer
,BoxGeneralizedSimulatedAnnealingMinimizer
,BracketSearchMinimizer
,BrentCetaMaximizer
,BrentMinimizer
,BruteForceIPMinimizer
,BruteForceMinimizer
,CombinedCetaMaximizer
,ConjugateGradientMinimizer
,CSDPMinimizer
,DEOptim
,DFPMinimizer
,DoubleBruteForceMinimizer
,FerrisMangasarianWrightPhase2
,FibonaccMinimizer
,FirstOrderMinimizer
,FletcherLineSearch
,FletcherReevesMinimizer
,GaussNewtonMinimizer.MySteepestDescent
,GeneralizedSimulatedAnnealingMinimizer
,GlobalSearchByLocalMinimizer
,GoldenMinimizer
,GomoryMixedCutMinimizer
,GomoryPureCutMinimizer
,GridSearchCetaMaximizer
,GridSearchMinimizer
,HomogeneousPathFollowingMinimizer
,HuangMinimizer
,ILPBranchAndBoundMinimizer
,IterativeC2Maximizer
,LeastPth
,LPCanonicalSolver
,LPRevisedSimplexSolver
,LPTwoPhaseSolver
,McCormickMinimizer
,NelderMeadMinimizer
,NewtonRaphsonMinimizer
,PearsonMinimizer
,PenaltyMethodMinimizer
,PowellMinimizer
,PrimalDualInteriorPointMinimizer
,PrimalDualInteriorPointMinimizer1
,PrimalDualPathFollowingMinimizer
,QPbySOCPMinimizer
,QPbySOCPMinimizer1
,QPDualActiveSetMinimizer
,QPPrimalActiveSetMinimizer
,QuasiNewtonMinimizer
,RankOneMinimizer
,SimpleGridMinimizer
,SimplexCuttingPlaneMinimizer
,SimulatedAnnealingMinimizer
,SQPActiveSetMinimizer
,SQPActiveSetOnlyEqualityConstraint1Minimizer
,SQPActiveSetOnlyEqualityConstraint2Minimizer
,SQPActiveSetOnlyInequalityConstraintMinimizer
,SteepestDescentMinimizer
,SubProblemMinimizer
,ZangwillMinimizer
public interface Optimizer<P,S>
Optimization, or mathematical programming, refers to choosing the best element from some set of available alternatives. In the simplest case, this means solving problems in which one seeks to minimize (or maximize) a real function by systematically choosing the values of real or integer variables from within an allowed set. The generalization of optimization theory and techniques to other formulations comprises a large area of applied mathematics. More generally, it means finding "best available" values of some objective function given a defined domain, including a variety of different types of objective functions and different types of domains. This interface defines the input (the optimization problem) and output (the optimization solution) of an optimization algorithm.- See Also:
- Wikipedia: Mathematical optimization
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description S
solve(P problem)
Solve an optimization problem, e.g.,OptimProblem
.
-
-
-
Method Detail
-
solve
S solve(P problem) throws Exception
Solve an optimization problem, e.g.,OptimProblem
.- Parameters:
problem
- an optimization problem- Returns:
- a solution to the optimization problem
- Throws:
Exception
- when there is an error solving the problem
-
-