Package dev.nm.analysis.integration.univariate.riemann.gaussian

Class Summary Class Description GaussChebyshevQuadrature GaussChebyshev Quadrature uses the following weighting function: \[ w(x) = \frac{1}{\sqrt{1  x^2}} \] to evaluate integrals in the interval (1, 1).GaussHermiteQuadrature GaussHermite quadrature exploits the fact that quadrature approximations are open integration formulas (that is, the values of the endpoints are not required) to evaluate of integrals in the range \((\infty, \infty )\).GaussianQuadrature A quadrature rule is a method of numerical integration in which we approximate the integral of a function by a weighted sum of sample points.GaussLaguerreQuadrature GaussLaguerre quadrature exploits the fact that quadrature approximations are open integration formulas (i.e.GaussLegendreQuadrature GaussLegendre quadrature considers the simplest case of uniform weighting: \(w(x) = 1\).