# Interface Integrator

All Known Subinterfaces:
IterativeIntegrator
All Known Implementing Classes:
ChangeOfVariable, GaussChebyshevQuadrature, GaussHermiteQuadrature, GaussianQuadrature, GaussLaguerreQuadrature, GaussLegendreQuadrature, Midpoint, NewtonCotes, Riemann, Romberg, Simpson, Trapezoidal

public interface Integrator
This defines the interface for the numerical integration of definite integrals of univariate functions.
• ## Method Summary

Modifier and Type
Method
Description
double
getPrecision()
Get the convergence threshold.
double
integrate(UnivariateRealFunction f, double a, double b)
Integrate function f from a to b, $\int_a^b\! f(x)\, dx$
• ## Method Details

• ### integrate

double integrate(UnivariateRealFunction f, double a, double b)
Integrate function f from a to b, $\int_a^b\! f(x)\, dx$
Parameters:
f - a univariate function
a - the lower limit
b - the upper limit
Returns:
$$\int_a^b\! f(x)\, dx$$
• ### getPrecision

double getPrecision()
Get the convergence threshold. The usage depends on the specific integrator. For example, for an IterativeIntegrator, the integral is considered converged if the relative error of two successive sums is less than the threshold.
Returns:
the precision