Class GammaRegularizedQ
java.lang.Object
dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
dev.nm.analysis.function.special.gamma.GammaRegularizedQ
- All Implemented Interfaces:
Function<Vector,
,Double> BivariateRealFunction
,RealScalarFunction
The Regularized Incomplete Gamma Q function is defined as:
\[
Q(s,x)=\frac{\Gamma(s,x)}{\Gamma(s)}=1-P(s,x), s \geq 0, x \geq 0
\]
The algorithm used for computing the regularized incomplete Gamma Q function depends on the values of s and x.
- For \(s > 100\), Q is approximated using the Gauss-Legendre quadrature.
- For \(x < s + 1\), Q is approximated using the Pearson's series representation.
- Otherwise, Q is approximated using the continued fraction expression by Legendre.
pgamma
. E.g., pgamma(x, s, lower=FALSE)
.- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
Constructor Summary
Constructors -
Method Summary
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
evaluate
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
Constructor Details
-
GammaRegularizedQ
public GammaRegularizedQ()
-
-
Method Details
-
evaluate
public double evaluate(double s, double x) Evaluate Q(s,x).- Parameters:
s
- s ≥ 0x
- x ≥ 0- Returns:
- Q(s,x)
-