# Class BetaRegularizedInverse

All Implemented Interfaces:
Function<Vector,Double>, RealScalarFunction, UnivariateRealFunction

public class BetaRegularizedInverse
The inverse of the Regularized Incomplete Beta function is defined at: $x = I^{-1}_{(p,q)}(u), 0 \le u \le 1$

The R equivalent function is qbeta.

• "Amparo Gil, Javier Segura, and Nico M. Temme, "Section 10.5," Numerical Methods for Special Functions."
• "John Maddock, Paul A. Bristow, Hubert Holin, and Xiaogang Zhang. "Notes for The Incomplete Beta Function Inverses," Boost Library."
• "K. L. Majumder, and G. P. Bhattacharjee, Algorithm AS 63: The Incomplete Beta Integral, 1973."
• "Cran, G. W., K. J. Martin, and G. E. Thomas, "Remark AS R19 and Algorithm AS 109," Applied Statistics, 26, 111-114, 1977, and subsequent remarks (AS83 and correction)."

## Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function

Function.EvaluationException
• ## Constructor Summary

Constructors
Constructor
Description
BetaRegularizedInverse(double p, double q)
Construct an instance of $$I^{-1}_{(p,q)}(u)$$ with parameters p and p.
• ## Method Summary

Modifier and Type
Method
Description
double
evaluate(double u)
Evaluate $$I^{-1}_{(p,q)}(u)$$.

### Methods inherited from class dev.nm.analysis.function.rn2r1.univariate.AbstractUnivariateRealFunction

evaluate

### Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction

dimensionOfDomain, dimensionOfRange

### Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

### Methods inherited from interface dev.nm.analysis.function.Function

dimensionOfDomain, dimensionOfRange
• ## Constructor Details

• ### BetaRegularizedInverse

public BetaRegularizedInverse(double p, double q)
Construct an instance of $$I^{-1}_{(p,q)}(u)$$ with parameters p and p.
Parameters:
p - p > 0
q - q > 0
• ## Method Details

• ### evaluate

public double evaluate(double u)
Evaluate $$I^{-1}_{(p,q)}(u)$$.
Parameters:
u - $$0 \le u \le 1$$
Returns:
$$I^{-1}_{(p,q)}(u)$$