Interface RealScalarFunction

All Superinterfaces:
Function<Vector,Double>
All Known Subinterfaces:
BivariateRealFunction, TrivariateRealFunction, UnivariateRealFunction
All Known Implementing Classes:
AbsoluteErrorPenalty, AbstractBivariateRealFunction, AbstractRealScalarFunction, AbstractTrivariateRealFunction, AbstractUnivariateRealFunction, ACERFunction, ACERInverseFunction, ACERLogFunction, ACERReturnLevel, AutoCorrelation, AutoCorrelationFunction, AutoCovariance, AutoCovarianceFunction, Beta, BetaRegularized, BetaRegularizedInverse, Bt, CauchyPolynomial, Ceta, CetaMaximizer.NegCetaFunction, ContinuedFraction, CourantPenalty, CumulativeNormalHastings, CumulativeNormalInverse, CumulativeNormalMarsaglia, DBeta, DBetaRegularized, DErf, Dfdx, DGamma, DGaussian, Digamma, DPolynomial, Erf, Erfc, ErfInverse, F_Sum_BtDt, F_Sum_tBtDt, FiltrationFunction, FiniteDifference, FletcherPenalty, GammaGergoNemes, GammaLanczos, GammaLanczosQuick, GammaLowerIncomplete, GammaRegularizedP, GammaRegularizedPInverse, GammaRegularizedQ, GammaUpperIncomplete, Gaussian, LinearInterpolator, LogBeta, LogGamma, MarketImpact1, MultinomialBetaFunction, MultiplierPenalty, MultivariateFiniteDifference, NevilleTable, PenaltyFunction, Polynomial, PortfolioRiskExactSigma, QPProblemOnlyEqualityConstraints, QuadraticFunction, QuadraticMonomial, R1Projection, Rastrigin, RealScalarSubFunction, ReturnLevel, ReturnPeriod, Ridders, SampleAutoCorrelation, SampleAutoCovariance, SamplePartialAutoCorrelation, ScaledPolynomial, SOCPLinearBlackList, SOCPLinearMaximumLoan, SOCPLinearSectorExposure, SOCPLinearSectorNeutrality, SOCPLinearSelfFinancing, SOCPLinearZeroValue, SOCPMaximumLoan, SOCPNoTradingList1, SOCPNoTradingList2, SOCPPortfolioConstraint, SOCPPortfolioObjectiveFunction, SOCPRiskConstraint, SOCPSectorExposure, SOCPSectorNeutrality, SOCPSelfFinancing, SOCPZeroValue, StepFunction, SumOfPenalties, Trigamma, ZeroPenalty

public interface RealScalarFunction extends Function<Vector,Double>
A real valued function a \(R^n \rightarrow R\) function, \(y = f(x_1, ..., x_n)\). The function takes n real arguments and output one real value.
See Also: