Uses of Interface
dev.nm.analysis.function.Function
Packages that use Function
Package
Description
-
Uses of Function in dev.nm.analysis.curvefit.interpolation
Classes in dev.nm.analysis.curvefit.interpolation that implement FunctionModifier and TypeClassDescriptionclass
Define a univariate function by linearly interpolating between adjacent points.class
Neville's algorithm is a polynomial interpolation algorithm. -
Uses of Function in dev.nm.analysis.differentiation
Classes in dev.nm.analysis.differentiation that implement FunctionModifier and TypeClassDescriptionclass
Ridders' method computes the numerical derivative of a function. -
Uses of Function in dev.nm.analysis.differentiation.multivariate
Classes in dev.nm.analysis.differentiation.multivariate that implement FunctionModifier and TypeClassDescriptionclass
The gradient function, g(x), evaluates the gradient of a real scalar function f at a point x.class
The Hessian function, H(x), evaluates the Hessian of a real scalar function f at a point x.class
The Jacobian function, J(x), evaluates the Jacobian of a real vector-valued function f at a point x.class
A partial derivative of a multivariate function is the derivative with respect to one of the variables with the others held constant. -
Uses of Function in dev.nm.analysis.differentiation.univariate
Classes in dev.nm.analysis.differentiation.univariate that implement FunctionModifier and TypeClassDescriptionclass
This is the first order derivative function of theBeta
function w.r.t x, \({\partial \over \partial x} \mathrm{B}(x, y)\).class
This is the first order derivative function of the Regularized Incomplete Beta function,BetaRegularized
, w.r.t the upper limit, x.class
This is the first order derivative function of the Error function,Erf
.class
The first derivative is a measure of how a function changes as its input changes.class
This is the first order derivative function of the Gamma function, \({d \mathrm{\Gamma}(x) \over dx}\).class
This is the first order derivative function of aGaussian
function, \({d \mathrm{\phi}(x) \over dx}\).class
This is the first order derivative function of aPolynomial
, which, again, is a polynomial.class
A finite difference (divided by a small increment) is an approximation of the derivative of a function. -
Uses of Function in dev.nm.analysis.function
Classes in dev.nm.analysis.function that implement FunctionModifier and TypeClassDescriptionclass
SubFunction<R>
A sub-function, g, is defined over a subset of the domain of another (original) function, f.Fields in dev.nm.analysis.function declared as FunctionConstructors in dev.nm.analysis.function with parameters of type Function -
Uses of Function in dev.nm.analysis.function.matrix
Subinterfaces of Function in dev.nm.analysis.function.matrixModifier and TypeInterfaceDescriptioninterface
This interface is a function that maps from Rn to a Matrix space.Classes in dev.nm.analysis.function.matrix that implement FunctionModifier and TypeClassDescriptionclass
A constant matrix function maps a real number to a constant matrix: \(R^n \rightarrow A\).class
This is a function that maps from R1 to a Matrix space.class
This is a function that maps from R2 to a Matrix space. -
Uses of Function in dev.nm.analysis.function.polynomial
Classes in dev.nm.analysis.function.polynomial that implement FunctionModifier and TypeClassDescriptionclass
The Cauchy's polynomial of a polynomial takes this form:class
A polynomial is aUnivariateRealFunction
that represents a finite length expression constructed from variables and constants, using the operations of addition, subtraction, multiplication, and constant non-negative whole number exponents.class
A quadratic monomial has this form: x2 + ux + v.class
This constructs a scaled polynomial that has neither too big or too small coefficients, hence avoiding overflow or underflow. -
Uses of Function in dev.nm.analysis.function.rn2r1
Subinterfaces of Function in dev.nm.analysis.function.rn2r1Modifier and TypeInterfaceDescriptioninterface
A bivariate real function takes two real arguments and outputs one real value.interface
A real valued function a \(R^n \rightarrow R\) function, \(y = f(x_1, ..., x_n)\).interface
A trivariate real function takes three real arguments and outputs one real value.Classes in dev.nm.analysis.function.rn2r1 that implement FunctionModifier and TypeClassDescriptionclass
A bivariate real function takes two real arguments and outputs one real value.class
This abstract implementation implementsdimensionOfRange()
by always returning 1, anddimensionOfDomain()
by returning the input argument for the dimension of domain.class
A trivariate real function takes three real arguments and outputs one real value.class
A quadratic function takes this form: \(f(x) = \frac{1}{2} \times x'Hx + x'p + c\).class
Projection creates a real-valued functionRealScalarFunction
from a vector-valued functionRealVectorFunction
by taking only one of its coordinate components in the vector output.class
This constructs aRealScalarFunction
from anotherRealScalarFunction
by restricting/fixing the values of a subset of variables. -
Uses of Function in dev.nm.analysis.function.rn2r1.univariate
Subinterfaces of Function in dev.nm.analysis.function.rn2r1.univariateModifier and TypeInterfaceDescriptioninterface
A univariate real function takes one real argument and outputs one real value.Classes in dev.nm.analysis.function.rn2r1.univariate that implement FunctionModifier and TypeClassDescriptionclass
A univariate real function takes one real argument and outputs one real value.class
A continued fraction representation of a number has this form: \[ z = b_0 + \cfrac{a_1}{b_1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cfrac{a_4}{b_4 + \ddots\,}}}} \] ai and bi can be functions of x, which in turn makes z a function of x.class
A step function (or staircase function) is a finite linear combination of indicator functions of intervals. -
Uses of Function in dev.nm.analysis.function.rn2rm
Subinterfaces of Function in dev.nm.analysis.function.rn2rmModifier and TypeInterfaceDescriptioninterface
A vector-valued function a \(R^n \rightarrow R^m\) function, \([y_1,...,y_m] = f(x_1,...,x_n)\).Classes in dev.nm.analysis.function.rn2rm that implement FunctionModifier and TypeClassDescriptionclass
This is a function that takes one real argument and outputs one vector value.class
This abstract implementation implementsdimensionOfDomain()
anddimensionOfRange()
by returning the input arguments at constructor.class
This constructs aRealVectorFunction
from anotherRealVectorFunction
by restricting/fixing the values of a subset of variables. -
Uses of Function in dev.nm.analysis.function.special
Classes in dev.nm.analysis.function.special that implement FunctionModifier and TypeClassDescriptionclass
The Rastrigin function is a non-convex function used as a performance test problem for optimization algorithms. -
Uses of Function in dev.nm.analysis.function.special.beta
Classes in dev.nm.analysis.function.special.beta that implement FunctionModifier and TypeClassDescriptionclass
The beta function defined as: \[ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}= \int_0^1t^{x-1}(1-t)^{y-1}\,dt, x > 0, y > 0 \]class
The Regularized Incomplete Beta function is defined as: \[ I_x(p,q) = \frac{B(x;\,p,q)}{B(p,q)} = \frac{1}{B(p,q)} \int_0^x t^{p-1}\,(1-t)^{q-1}\,dt, p > 0, q > 0 \]class
The inverse of the Regularized Incomplete Beta function is defined at: \[ x = I^{-1}_{(p,q)}(u), 0 \le u \le 1 \]class
This class represents the log of Beta functionlog(B(x, y))
.class
A multinomial Beta function is defined as: \[ \frac{\prod_{i=1}^K \Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^K \alpha_i\right)},\qquad\boldsymbol{\alpha}=(\alpha_1,\cdots,\alpha_K) \] -
Uses of Function in dev.nm.analysis.function.special.gamma
Classes in dev.nm.analysis.function.special.gamma that implement FunctionModifier and TypeClassDescriptionclass
The digamma function is defined as the logarithmic derivative of the gamma function.class
The Gergo Nemes' algorithm is very simple and quick to compute the Gamma function, if accuracy is not critical.class
Lanczos approximation provides a way to compute the Gamma function such that the accuracy can be made arbitrarily precise.class
Lanczos approximation, computations are done indouble
.class
The Lower Incomplete Gamma function is defined as: \[ \gamma(s,x) = \int_0^x t^{s-1}\,e^{-t}\,{\rm d}t = P(s,x)\Gamma(s) \] P(s,x) is the Regularized Incomplete Gamma P function.class
The Regularized Incomplete Gamma P function is defined as: \[ P(s,x) = \frac{\gamma(s,x)}{\Gamma(s)} = 1 - Q(s,x), s \geq 0, x \geq 0 \]class
The inverse of the Regularized Incomplete Gamma P function is defined as: \[ x = P^{-1}(s,u), 0 \geq u \geq 1 \] Whens > 1
, we use the asymptotic inversion method. Whens <= 1
, we use an approximation of P(s,x) together with a higher-order Newton like method. In both cases, the estimated value is then improved using Halley's method, c.f.,HalleyRoot
.class
The Regularized Incomplete Gamma Q function is defined as: \[ Q(s,x)=\frac{\Gamma(s,x)}{\Gamma(s)}=1-P(s,x), s \geq 0, x \geq 0 \] The algorithm used for computing the regularized incomplete Gamma Q function depends on the values of s and x.class
The Upper Incomplete Gamma function is defined as: \[ \Gamma(s,x) = \int_x^{\infty} t^{s-1}\,e^{-t}\,{\rm d}t = Q(s,x) \times \Gamma(s) \] The integrand has the same form as the Gamma function, but the lower limit of the integration is a variable.class
The log-Gamma function, \(\log (\Gamma(z))\), for positive real numbers, is the log of the Gamma function.class
The trigamma function is defined as the logarithmic derivative of the digamma function. -
Uses of Function in dev.nm.analysis.function.special.gaussian
Classes in dev.nm.analysis.function.special.gaussian that implement FunctionModifier and TypeClassDescriptionclass
Hastings algorithm is faster but less accurate way to compute the cumulative standard Normal.class
The inverse of the cumulative standard Normal distribution function is defined as: \[ N^{-1}(u) /]class
Marsaglia is about 3 times slower but is more accurate to compute the cumulative standard Normal.class
The Error function is defined as: \[ \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_{0}^x e^{-t^2} dt \]class
This complementary Error function is defined as: \[ \operatorname{erfc}(x) = 1-\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt \]class
The inverse of the Error function is defined as: \[ \operatorname{erf}^{-1}(x) \]class
The Gaussian function is defined as: \[ f(x) = a e^{- { \frac{(x-b)^2 }{ 2 c^2} } } \] -
Uses of Function in dev.nm.misc.algorithm
Methods in dev.nm.misc.algorithm with parameters of type FunctionModifier and TypeMethodDescriptiondouble[]
Bins.getBinObjectValues
(Function<List<T>, Double> f) Applies a function to the items of each bin.Constructors in dev.nm.misc.algorithm with parameters of type FunctionModifierConstructorDescriptionBruteForce
(Function<D, R> function) Constructs a brute force search for a function. -
Uses of Function in dev.nm.solver.multivariate.constrained.convex.sdp.socp.problem.portfoliooptimization
Classes in dev.nm.solver.multivariate.constrained.convex.sdp.socp.problem.portfoliooptimization that implement FunctionModifier and TypeClassDescriptionclass
Constructs the constraint coefficient arrays of a market impact term in the compact form.class
Constructs the constraint coefficient arrays of the portfolio risk term in the compact form.class
An SOCP constraint for portfolio optimization, e.g., market impact, is represented by a set of constraints in this form: \[ ||A^{T}x+c||_{2}\leq b^{T}x+d \] or this form: /[ A^T x = c, x \in \Re^m /] or this form: /[ A^T x \leq c, x \in \Re^m /]class
Constructs the objective function for portfolio optimization.class
-
Uses of Function in dev.nm.solver.multivariate.constrained.convex.sdp.socp.qp.problem
Classes in dev.nm.solver.multivariate.constrained.convex.sdp.socp.qp.problem that implement FunctionModifier and TypeClassDescriptionclass
A quadratic programming problem with only equality constraints can be converted into a equivalent quadratic programming problem without constraints, hence a mere quadratic function. -
Uses of Function in dev.nm.solver.multivariate.constrained.general.penaltymethod
Classes in dev.nm.solver.multivariate.constrained.general.penaltymethod that implement FunctionModifier and TypeClassDescriptionclass
This penalty function sums up the absolute error penalties.class
This penalty function sums up the squared error penalties.class
This penalty function sums up the squared costs penalties.class
A multiplier penalty function allows different weights to be assigned to the constraints.class
A function P: Rn -> R is a penalty function for a constrained optimization problem if it has these properties.class
This penalty function sums up the costs from a set of constituent penalty functions.class
This is a dummy zero cost (no cost) penalty function. -
Uses of Function in dev.nm.solver.multivariate.unconstrained
Methods in dev.nm.solver.multivariate.unconstrained with parameters of type Function -
Uses of Function in dev.nm.stat.evt.evd.univariate.fitting.acer
Classes in dev.nm.stat.evt.evd.univariate.fitting.acer that implement FunctionModifier and TypeClassDescriptionclass
The ACER (Average Conditional Exceedance Rate) function \(\epsilon_k(\eta)\) approximates the probability \[ \epsilon_k(\eta) = Pr(X_k > \eta | X_1 \le \eta, X_2 \le \eta, ..., X_{k-1} \le \eta) \] for a sequence of stochastic process observations \(X_i\) with a k-step memory.class
The inverse of the ACER function.class
The ACER function in log scale (base e), i.e., \(log(\epsilon_k(\eta))\).class
Given an ACER function, compute the return level \(\eta\) for a given return period \(R\). -
Uses of Function in dev.nm.stat.evt.function
Classes in dev.nm.stat.evt.function that implement FunctionModifier and TypeClassDescriptionclass
Given a GEV distribution of a random variable \(X\), the return level \(\eta\) is the value that is expected to be exceeded on average once every interval of time \(T\), with a probability of \(1 / T\).class
The return period \(R\) of a level \(\eta\) for a random variable \(X\) is the mean number of trials that must be done for \(X\) to exceed \(\eta\). -
Uses of Function in dev.nm.stat.random.rng.multivariate.mcmc.proposalfunction
Classes in dev.nm.stat.random.rng.multivariate.mcmc.proposalfunction that implement FunctionModifier and TypeClassDescriptionclass
A proposal generator where each perturbation is a random vector, where each element is drawn from a standard Normal distribution, multiplied by a scale matrix.class
class
A proposal function goes from the current state to the next state, where a state is a vector. -
Uses of Function in dev.nm.stat.stochasticprocess.univariate.filtration
Classes in dev.nm.stat.stochasticprocess.univariate.filtration that implement FunctionModifier and TypeClassDescriptionclass
This is aFiltrationFunction
that returns \(B(t_i)\), the Brownian motion value at the i-th time point.class
This represents a function of this integral \[ I = \int_{0}^{1} B(t)dt \]class
This represents a function of this integral \[ \int_{0}^{1} (t - 0.5) * B(t) dt \]class
A filtration function, parameterized by a fixed filtration, is a function of time, \(f(\mathfrak{F_{t_i}})\). -
Uses of Function in dev.nm.stat.timeseries.linear.multivariate
Classes in dev.nm.stat.timeseries.linear.multivariate that implement FunctionModifier and TypeClassDescriptionclass
This is the auto-correlation function of a multi-dimensional time series {Xt}.class
This is the auto-covariance function of a multi-dimensional time series {Xt}, \[ K(i, j) = E((X_i - \mu_i) \times (X_j - \mu_j)') \] For a stationary process, the auto-covariance depends only on the lag, |i - j|. -
Uses of Function in dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma
Classes in dev.nm.stat.timeseries.linear.multivariate.stationaryprocess.arma that implement FunctionModifier and TypeClassDescriptionclass
Compute the Auto-Correlation Function (ACF) for a vector AutoRegressive Moving Average (ARMA) model, assuming that EXt = 0.class
Compute the Auto-CoVariance Function (ACVF) for a vector AutoRegressive Moving Average (ARMA) model, assuming that EXt = 0. -
Uses of Function in dev.nm.stat.timeseries.linear.univariate
Classes in dev.nm.stat.timeseries.linear.univariate that implement FunctionModifier and TypeClassDescriptionclass
This is the auto-correlation function of a univariate time series {xt}.class
This is the auto-covariance function of a univariate time series {xt}. -
Uses of Function in dev.nm.stat.timeseries.linear.univariate.sample
Classes in dev.nm.stat.timeseries.linear.univariate.sample that implement FunctionModifier and TypeClassDescriptionclass
This is the sample Auto-Correlation Function (ACF) for a univariate data set.class
This is the sample Auto-Covariance Function (ACVF) for a univariate data set.class
This is the sample partial Auto-Correlation Function (PACF) for a univariate data set. -
Uses of Function in dev.nm.stat.timeseries.linear.univariate.stationaryprocess.arma
Classes in dev.nm.stat.timeseries.linear.univariate.stationaryprocess.arma that implement FunctionModifier and TypeClassDescriptionclass
Compute the Auto-Correlation Function (ACF) for an AutoRegressive Moving Average (ARMA) model, assuming that EXt = 0.class
Computes the Auto-CoVariance Function (ACVF) for an AutoRegressive Moving Average (ARMA) model by recursion. -
Uses of Function in tech.nmfin.portfoliooptimization.lai2010.ceta
Classes in tech.nmfin.portfoliooptimization.lai2010.ceta that implement Function -
Uses of Function in tech.nmfin.portfoliooptimization.lai2010.ceta.maximizer
Classes in tech.nmfin.portfoliooptimization.lai2010.ceta.maximizer that implement Function -
Uses of Function in tech.nmfin.portfoliooptimization.socp.constraints
Classes in tech.nmfin.portfoliooptimization.socp.constraints that implement FunctionModifier and TypeClassDescriptionclass
A black list means that the positions of some assets must be zero.class
A maximum loan constraint.class
A sector neutrality means that the sum of weights for given sectors are zero.class
A self financing constraint.class
A zero value constraint.class
Transforms a maximum loan constraint into the compact SOCP form.class
Transforms a black list (not to trade a new position) constraint into the compact SOCP form.class
Transforms a sector neutral constraint into the compact SOCP form.class
Transforms a self financing constraint into the compact SOCP form.class
Transforms a zero value constraint into the compact SOCP form. -
Uses of Function in tech.nmfin.portfoliooptimization.socp.constraints.ybar
Classes in tech.nmfin.portfoliooptimization.socp.constraints.ybar that implement FunctionModifier and TypeClassDescriptionclass
A sector exposure constraint.class
Transforms a black list (not to trade a new position) constraint into the compact SOCP form.class
Transforms a sector exposure constraint into the compact SOCP form.