Interface Monoid<G>

Type Parameters:
G - a monoid
All Known Subinterfaces:
Field<F>, GenericMatrix<T,F>, Matrix, MatrixRing, Ring<R>, SparseMatrix
All Known Implementing Classes:
BidiagonalMatrix, BorderedHessian, CauchyPolynomial, ColumnBindMatrix, Complex, ComplexMatrix, CongruentMatrix, CorrelationMatrix, CSCSparseMatrix, CSRSparseMatrix, DenseMatrix, DiagonalMatrix, DiagonalSum, DOKSparseMatrix, DPolynomial, FastKroneckerProduct, GenericFieldMatrix, GivensMatrix, GoldfeldQuandtTrotter, Hessian, HilbertMatrix, ImmutableMatrix, Inverse, Jacobian, KroneckerProduct, LILSparseMatrix, LowerTriangularMatrix, MAT, MatrixRootByDiagonalization, MatthewsDavies, OuterProduct, PermutationMatrix, Polynomial, PositiveDefiniteMatrixByPositiveDiagonal, PositiveSemiDefiniteMatrixNonNegativeDiagonal, Pow, PseudoInverse, QuadraticMonomial, Real, RealMatrix, ReturnsMatrix, SampleCovariance, ScaledPolynomial, SimilarMatrix, SubMatrixRef, SymmetricKronecker, SymmetricMatrix, TridiagonalMatrix, UpperTriangularMatrix, VariancebtX

public interface Monoid<G>
A monoid is a group with a binary operation (×), satisfying the group axioms:
  1. closure
  2. associativity
  3. existence of multiplicative identity
See Also:
  • Method Summary

    Modifier and Type
    Method
    Description
    multiply(G that)
    × : G × G → G
    ONE()
    The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
  • Method Details

    • multiply

      G multiply(G that)
      × : G × G → G
      Parameters:
      that - the multiplicand
      Returns:
      this × that
    • ONE

      G ONE()
      The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
      Returns:
      1