# Interface Monoid<G>

Type Parameters:
G - a monoid
All Known Subinterfaces:
Field<F>, GenericMatrix<T,F>, Matrix, MatrixRing, Ring<R>, SparseMatrix
All Known Implementing Classes:
BidiagonalMatrix, BorderedHessian, CauchyPolynomial, ColumnBindMatrix, Complex, ComplexMatrix, CongruentMatrix, CorrelationMatrix, CSCSparseMatrix, CSRSparseMatrix, DenseMatrix, DiagonalMatrix, DiagonalSum, DOKSparseMatrix, DPolynomial, FastKroneckerProduct, GenericFieldMatrix, GivensMatrix, GoldfeldQuandtTrotter, Hessian, HilbertMatrix, ImmutableMatrix, Inverse, Jacobian, KroneckerProduct, LILSparseMatrix, LowerTriangularMatrix, MAT, MatrixRootByDiagonalization, MatthewsDavies, OuterProduct, PermutationMatrix, Polynomial, PositiveDefiniteMatrixByPositiveDiagonal, PositiveSemiDefiniteMatrixNonNegativeDiagonal, Pow, PseudoInverse, QuadraticMonomial, Real, RealMatrix, ReturnsMatrix, SampleCovariance, ScaledPolynomial, SimilarMatrix, SubMatrixRef, SymmetricKronecker, SymmetricMatrix, TridiagonalMatrix, UpperTriangularMatrix, VariancebtX

public interface Monoid<G>
A monoid is a group with a binary operation (×), satisfying the group axioms:
1. closure
2. associativity
3. existence of multiplicative identity
• ## Method Summary

Modifier and Type
Method
Description
G
multiply(G that)
× : G × G → G
G
ONE()
The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
• ## Method Details

• ### multiply

G multiply(G that)
× : G × G → G
Parameters:
that - the multiplicand
Returns:
this × that
• ### ONE

G ONE()
The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
Returns:
1