Interface BanachSpace<B,F extends Field<F> & Comparable<F>>

All Superinterfaces:
AbelianGroup<B>, VectorSpace<B,F>
All Known Subinterfaces:
HilbertSpace<H,F>, Vector
All Known Implementing Classes:
Basis, CombinedVectorByRef, DenseVector, Gradient, ImmutableVector, SparseVector, SubVectorRef, SVEC

public interface BanachSpace<B,F extends Field<F> & Comparable<F>> extends VectorSpace<B,F>
A Banach space, B, is a complete normed vector space such that every Cauchy sequence (with respect to the metric d(x, y) = |x - y|) in B has a limit in B.
See Also:
  • Method Summary

    Modifier and Type
    |⋅| : B → F

    Methods inherited from interface dev.nm.algebra.structure.AbelianGroup

    add, minus, opposite, ZERO

    Methods inherited from interface dev.nm.algebra.structure.VectorSpace

  • Method Details

    • norm

      double norm()
      |⋅| : B → F

      norm assigns a strictly positive length or size to all vectors in the vector space, other than the zero vector.

      See Also: