Class MatrixMeasure
- java.lang.Object
-
- dev.nm.algebra.linear.matrix.doubles.operation.MatrixMeasure
-
public class MatrixMeasure extends Object
A measure, μ, of a matrix, A, is a map from the Matrix space to the Real line. That is,μ: A -> R
-
-
Constructor Summary
Constructors Constructor Description MatrixMeasure()
-
Method Summary
All Methods Static Methods Concrete Methods Deprecated Methods Modifier and Type Method Description static double
det(Matrix A)
Compute the determinant of a matrix.static double
Frobenius(Matrix A)
Compute the Frobenius norm, i.e., the sqrt of the sum of squares of all elements of a matrix.static double
max(Matrix A)
Compute the maximal entry in a matrix.static double
min(Matrix A)
Compute the minimal entry in a matrix.static int
nullity(Matrix A)
Deprecated.Not supported yet.static int
rank(Matrix A)
Compute the numerical rank of a matrix.static int
rank(Matrix A, double epsilon)
Compute the numerical rank of a matrix.static double
tr(Matrix A)
Compute the sum of the diagonal elements, i.e., the trace of a matrix.
-
-
-
Method Detail
-
rank
public static int rank(Matrix A, double epsilon)
Compute the numerical rank of a matrix. Ignore all singular values smaller than a threshold.- Parameters:
A
- a matrixepsilon
- a precision parameter: when a number |x| ≤ ε, it is considered 0- Returns:
- the numerical rank of A
- See Also:
- Wikipedia: Rank (linear algebra)
-
rank
public static int rank(Matrix A)
Compute the numerical rank of a matrix. Ignore all singular values less than a threshold.- Parameters:
A
- a matrix- Returns:
- the numerical rank of A
-
nullity
@Deprecated public static int nullity(Matrix A)
Deprecated.Not supported yet.Compute the nullity of a matrix.- Parameters:
A
- a matrix- Returns:
- the nullity of A
- See Also:
- Wikipedia: Rank-nullity theorem
-
det
public static double det(Matrix A)
Compute the determinant of a matrix.- Parameters:
A
- a matrix- Returns:
- the determinant of A
- See Also:
- Wikipedia: Determinant
-
tr
public static double tr(Matrix A)
Compute the sum of the diagonal elements, i.e., the trace of a matrix.- Parameters:
A
- a matrix- Returns:
- the trace of A
- See Also:
- Wikipedia: Trace (linear algebra)
-
Frobenius
public static double Frobenius(Matrix A)
Compute the Frobenius norm, i.e., the sqrt of the sum of squares of all elements of a matrix.- Parameters:
A
- a matrix- Returns:
- the sqrt of sum of squares of all elements in A
- See Also:
- Wikipedia: Frobenius norm
-
max
public static double max(Matrix A)
Compute the maximal entry in a matrix.- Parameters:
A
- a matrix- Returns:
- the maximal entry
-
min
public static double min(Matrix A)
Compute the minimal entry in a matrix.- Parameters:
A
- a matrix- Returns:
- the minimal entry
-
-