Class MatrixMeasure


  • public class MatrixMeasure
    extends Object
    A measure, μ, of a matrix, A, is a map from the Matrix space to the Real line. That is,
    μ: A -> R
    • Constructor Detail

      • MatrixMeasure

        public MatrixMeasure()
    • Method Detail

      • rank

        public static int rank​(Matrix A,
                               double epsilon)
        Compute the numerical rank of a matrix. Ignore all singular values smaller than a threshold.
        Parameters:
        A - a matrix
        epsilon - a precision parameter: when a number |x| ≤ ε, it is considered 0
        Returns:
        the numerical rank of A
        See Also:
        Wikipedia: Rank (linear algebra)
      • rank

        public static int rank​(Matrix A)
        Compute the numerical rank of a matrix. Ignore all singular values less than a threshold.
        Parameters:
        A - a matrix
        Returns:
        the numerical rank of A
      • det

        public static double det​(Matrix A)
        Compute the determinant of a matrix.
        Parameters:
        A - a matrix
        Returns:
        the determinant of A
        See Also:
        Wikipedia: Determinant
      • tr

        public static double tr​(Matrix A)
        Compute the sum of the diagonal elements, i.e., the trace of a matrix.
        Parameters:
        A - a matrix
        Returns:
        the trace of A
        See Also:
        Wikipedia: Trace (linear algebra)
      • Frobenius

        public static double Frobenius​(Matrix A)
        Compute the Frobenius norm, i.e., the sqrt of the sum of squares of all elements of a matrix.
        Parameters:
        A - a matrix
        Returns:
        the sqrt of sum of squares of all elements in A
        See Also:
        Wikipedia: Frobenius norm
      • max

        public static double max​(Matrix A)
        Compute the maximal entry in a matrix.
        Parameters:
        A - a matrix
        Returns:
        the maximal entry
      • min

        public static double min​(Matrix A)
        Compute the minimal entry in a matrix.
        Parameters:
        A - a matrix
        Returns:
        the minimal entry