Interface Integrator
-
- All Known Subinterfaces:
IterativeIntegrator
- All Known Implementing Classes:
ChangeOfVariable,GaussChebyshevQuadrature,GaussHermiteQuadrature,GaussianQuadrature,GaussLaguerreQuadrature,GaussLegendreQuadrature,Midpoint,NewtonCotes,Riemann,Romberg,Simpson,Trapezoidal
public interface IntegratorThis defines the interface for the numerical integration of definite integrals of univariate functions.- See Also:
- Wikipedia: Numerical integration
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doublegetPrecision()Get the convergence threshold.doubleintegrate(UnivariateRealFunction f, double a, double b)Integrate function f from a to b, \[ \int_a^b\! f(x)\, dx \]
-
-
-
Method Detail
-
integrate
double integrate(UnivariateRealFunction f, double a, double b)
Integrate function f from a to b, \[ \int_a^b\! f(x)\, dx \]- Parameters:
f- a univariate functiona- the lower limitb- the upper limit- Returns:
- \(\int_a^b\! f(x)\, dx\)
-
getPrecision
double getPrecision()
Get the convergence threshold. The usage depends on the specific integrator. For example, for anIterativeIntegrator, the integral is considered converged if the relative error of two successive sums is less than the threshold.- Returns:
- the precision
-
-