Class ImmutableVector
- java.lang.Object
-
- dev.nm.algebra.linear.vector.doubles.ImmutableVector
-
- All Implemented Interfaces:
Vector,AbelianGroup<Vector>,BanachSpace<Vector,Real>,HilbertSpace<Vector,Real>,VectorSpace<Vector,Real>,DeepCopyable
public class ImmutableVector extends Object implements Vector
This is a read-only view of aVectorinstance. It keeps the reference to the instance and delegates all operations to the instance except for set(int, double) which will always result in anVectorAccessException. It may, however, still be modified indirectly via the reference of the original vector. To ensure complete immutability, an independent copy is needed. That is,
Note that the returned values of all operations (e.g.,ImmutableVector immutable = new ImmutableVector(v.deepCopy());add) has the same types as the original ones.
-
-
Constructor Summary
Constructors Constructor Description ImmutableVector(Vector v)Construct a read-only version of a vector.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Vectoradd(double scalar)Add a constant to all entries in this vector.Vectoradd(Vector that)\(this + that\)doubleangle(Vector that)Measure the angle, \(\theta\), betweenthisandthat.ImmutableVectordeepCopy()The implementation returns an instance created fromthisby the copy constructor of the class, or justthisif the instance itself is immutable.Vectordivide(Vector that)Dividethisbythat, entry-by-entry.booleanequals(Object obj)doubleget(int index)Get the value at position i.inthashCode()doubleinnerProduct(Vector that)Inner product in the Euclidean space is the dot product.Vectorminus(double scalar)Subtract a constant from all entries in this vector.Vectorminus(Vector that)\(this - that\)Vectormultiply(Vector that)Multiplythisbythat, entry-by-entry.doublenorm()Compute the length or magnitude or Euclidean norm of a vector, namely, \(\|v\|\).doublenorm(double p)Gets the \(L^p\)-norm \(\|v\|_p\) of this vector.Vectoropposite()Get the opposite of this vector.Vectorpow(double scalar)Take the exponentiation of all entries in this vector, entry-by-entry.Vectorscaled(double scalar)Scale this vector by a constant, entry-by-entry.Vectorscaled(Real scalar)Scale this vector by a constant, entry-by-entry.voidset(int i, double value)This method is overridden to always throwVectorAccessException.intsize()Get the length of this vector.double[]toArray()Cast this vector into a 1Ddouble[].StringtoString()VectorZERO()Get a 0-vector that has the same length as this vector.
-
-
-
Constructor Detail
-
ImmutableVector
public ImmutableVector(Vector v)
Construct a read-only version of a vector. Note that, however, changing the original vector changes the "immutable" version as well.- Parameters:
v- a vector
-
-
Method Detail
-
set
public final void set(int i, double value)This method is overridden to always throwVectorAccessException.- Specified by:
setin interfaceVector- Parameters:
i- the index of the entry to change. The indices are counting from 1, NOT 0.value- the value to change to- Throws:
VectorAccessException- always
-
size
public int size()
Description copied from interface:VectorGet the length of this vector.
-
get
public double get(int index)
Description copied from interface:VectorGet the value at position i.
-
add
public Vector add(Vector that)
Description copied from interface:Vector\(this + that\)- Specified by:
addin interfaceAbelianGroup<Vector>- Specified by:
addin interfaceVector- Parameters:
that- a vector- Returns:
- \(this + that\)
-
minus
public Vector minus(Vector that)
Description copied from interface:Vector\(this - that\)- Specified by:
minusin interfaceAbelianGroup<Vector>- Specified by:
minusin interfaceVector- Parameters:
that- a vector- Returns:
- \(this - that\)
-
multiply
public Vector multiply(Vector that)
Description copied from interface:VectorMultiplythisbythat, entry-by-entry.
-
divide
public Vector divide(Vector that)
Description copied from interface:VectorDividethisbythat, entry-by-entry.
-
add
public Vector add(double scalar)
Description copied from interface:VectorAdd a constant to all entries in this vector.
-
minus
public Vector minus(double scalar)
Description copied from interface:VectorSubtract a constant from all entries in this vector.
-
innerProduct
public double innerProduct(Vector that)
Description copied from interface:VectorInner product in the Euclidean space is the dot product.- Specified by:
innerProductin interfaceHilbertSpace<Vector,Real>- Specified by:
innerProductin interfaceVector- Parameters:
that- a vector- Returns:
- \(this \cdot that\)
- See Also:
- Wikipedia: Dot product
-
pow
public Vector pow(double scalar)
Description copied from interface:VectorTake the exponentiation of all entries in this vector, entry-by-entry.
-
scaled
public Vector scaled(double scalar)
Description copied from interface:VectorScale this vector by a constant, entry-by-entry. Here is a way to get a unit version of the vector:vector.scaled(1. / vector.norm())
-
scaled
public Vector scaled(Real scalar)
Description copied from interface:VectorScale this vector by a constant, entry-by-entry. Here is a way to get a unit version of the vector:vector.scaled(1. / vector.norm())- Specified by:
scaledin interfaceVector- Specified by:
scaledin interfaceVectorSpace<Vector,Real>- Parameters:
scalar- a constant- Returns:
- \(c \times this\)
- See Also:
- Wikipedia: Scalar multiplication
-
norm
public double norm()
Description copied from interface:VectorCompute the length or magnitude or Euclidean norm of a vector, namely, \(\|v\|\).- Specified by:
normin interfaceBanachSpace<Vector,Real>- Specified by:
normin interfaceVector- Returns:
- the Euclidean norm
- See Also:
- Wikipedia: Norm (mathematics)
-
norm
public double norm(double p)
Description copied from interface:VectorGets the \(L^p\)-norm \(\|v\|_p\) of this vector.- When p is finite, \(\|v\|_p = \sum_{i}|v_i^p|^\frac{1}{p}\).
- When p is \(+\infty\) (
Double.POSITIVE_INFINITY), \(\|v\|_p = \max|v_i|\). - When p is \(-\infty\) (
Double.NEGATIVE_INFINITY), \(\|v\|_p = \min|v_i|\).
- Specified by:
normin interfaceVector- Parameters:
p- p ≥ 1, orDouble.POSITIVE_INFINITYorDouble.NEGATIVE_INFINITY- Returns:
- \(\|v\|_p\)
- See Also:
- Wikipedia: Norm (mathematics)
-
angle
public double angle(Vector that)
Description copied from interface:VectorMeasure the angle, \(\theta\), betweenthisandthat. That is, \[ this \cdot that = \|this\| \times \|that\| \times \cos \theta \]
-
opposite
public Vector opposite()
Description copied from interface:VectorGet the opposite of this vector.- Specified by:
oppositein interfaceAbelianGroup<Vector>- Specified by:
oppositein interfaceVector- Returns:
- -v
- See Also:
- Wikipedia: Additive inverse
-
ZERO
public Vector ZERO()
Description copied from interface:VectorGet a 0-vector that has the same length as this vector.- Specified by:
ZEROin interfaceAbelianGroup<Vector>- Specified by:
ZEROin interfaceVector- Returns:
- the 0-vector
-
toArray
public double[] toArray()
Description copied from interface:VectorCast this vector into a 1Ddouble[].
-
deepCopy
public ImmutableVector deepCopy()
Description copied from interface:DeepCopyableThe implementation returns an instance created fromthisby the copy constructor of the class, or justthisif the instance itself is immutable.- Specified by:
deepCopyin interfaceDeepCopyable- Specified by:
deepCopyin interfaceVector- Returns:
- an independent (deep) copy of the instance
-
-