Package dev.nm.algebra.structure
Interface BanachSpace<B,F extends Field<F> & Comparable<F>>
-
- All Superinterfaces:
AbelianGroup<B>
,VectorSpace<B,F>
- All Known Subinterfaces:
HilbertSpace<H,F>
,Vector
- All Known Implementing Classes:
Basis
,CombinedVectorByRef
,DenseVector
,Gradient
,ImmutableVector
,SparseVector
,SubVectorRef
,SVEC
public interface BanachSpace<B,F extends Field<F> & Comparable<F>> extends VectorSpace<B,F>
A Banach space, B, is a complete normed vector space such that every Cauchy sequence (with respect to the metric d(x, y) = |x - y|) in B has a limit in B.- See Also:
- Wikipedia: Banach space
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
norm()
|⋅| : B → F-
Methods inherited from interface dev.nm.algebra.structure.AbelianGroup
add, minus, opposite, ZERO
-
Methods inherited from interface dev.nm.algebra.structure.VectorSpace
scaled
-
-
-
-
Method Detail
-
norm
double norm()
|⋅| : B → Fnorm
assigns a strictly positive length or size to all vectors in the vector space, other than the zero vector.- Returns:
- |this|
- See Also:
- Wikipedia: Norm (mathematics)
-
-