Class ODE


  • public class ODE
    extends Object
    An ordinary differential equation (ODE) is an equation in which there is only one independent variable and one or more derivatives of a dependent variable with respect to the independent variable, so that all the derivatives occurring in the equation are ordinary derivatives. A (high order) ordinary differential equation of order n takes this form. \[ y^{(n)} = F(x,y,y',\ \dotsc,\ y^{(n-1)}) \]
    See Also:
    Wikipedia: Ordinary differential equation
    • Constructor Detail

      • ODE

        public ODE​(RealScalarFunction F,
                   double[] initials,
                   double x0,
                   double x1)
        Construct an ODE of order n together with its initial values.
        Parameters:
        F - y(n) = F(x, y, y', ..., y(n-1))
        initials - y(x0), y'(x0), ..., y(n-1)(x0)
        x0 - the start point of the integrating interval [x0, x1]
        x1 - the end point of the integrating interval [x0, x1]
    • Method Detail

      • F

        public RealScalarFunction F()
        Get the differential, \(y^{(n)} = F\).
        Returns:
        the differential
      • y0

        public double y0​(int order)
        Get the initial value for the n-th order (derivative).
        Parameters:
        order - the differentiation order
        Returns:
        the initial value for the n-th order
      • x0

        public double x0()
        Get the start point of the integrating interval [x0, x1].
        Returns:
        x0
      • x1

        public double x1()
        Get the end point of the integrating interval [x0, x1].
        Returns:
        x1