Class GaussChebyshevQuadrature

  • All Implemented Interfaces:
    Integrator

    public class GaussChebyshevQuadrature
    extends GaussianQuadrature
    Gauss-Chebyshev Quadrature uses the following weighting function: \[ w(x) = \frac{1}{\sqrt{1 - x^2}} \] to evaluate integrals in the interval (-1, 1). Therefore, this method can be used for finding the integral \[ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx. \]

    This results in the evaluation points being roots of Chebyshev polynomials. In this method, both the coefficients and the evaluation points can be calculated directly.

    See Also:
    Wikipedia: Chebyshev-Gauss quadrature
    • Constructor Detail

      • GaussChebyshevQuadrature

        public GaussChebyshevQuadrature​(int n)
        Create an integrator of order n.
        Parameters:
        n - the number of points in the quadrature rule