Package dev.nm.algebra.structure
Interface Monoid<G>
-
- Type Parameters:
G- a monoid
- All Known Subinterfaces:
Field<F>,GenericMatrix<T,F>,Matrix,MatrixRing,Ring<R>,SparseMatrix
- All Known Implementing Classes:
BidiagonalMatrix,BorderedHessian,CauchyPolynomial,ColumnBindMatrix,Complex,ComplexMatrix,CongruentMatrix,CorrelationMatrix,CSRSparseMatrix,DenseMatrix,DiagonalMatrix,DiagonalSum,DOKSparseMatrix,DPolynomial,FastKroneckerProduct,GenericFieldMatrix,GivensMatrix,GoldfeldQuandtTrotter,Hessian,HilbertMatrix,ImmutableMatrix,Inverse,Jacobian,KroneckerProduct,LILSparseMatrix,LowerTriangularMatrix,MAT,MatrixRootByDiagonalization,MatthewsDavies,OuterProduct,PermutationMatrix,Polynomial,PositiveDefiniteMatrixByPositiveDiagonal,PositiveSemiDefiniteMatrixNonNegativeDiagonal,Pow,PseudoInverse,QuadraticMonomial,Real,RealMatrix,ReturnsMatrix,SampleCovariance,ScaledPolynomial,SimilarMatrix,SubMatrixRef,SymmetricKronecker,SymmetricMatrix,TridiagonalMatrix,UpperTriangularMatrix,VariancebtX
public interface Monoid<G>A monoid is a group with a binary operation (×), satisfying the group axioms:- closure
- associativity
- existence of multiplicative identity
- See Also:
- Wikipedia: Monoid
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Gmultiply(G that)× : G × G → GGONE()The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
-