Class GaussChebyshevQuadrature
- java.lang.Object
-
- dev.nm.analysis.integration.univariate.riemann.gaussian.GaussianQuadrature
-
- dev.nm.analysis.integration.univariate.riemann.gaussian.GaussChebyshevQuadrature
-
- All Implemented Interfaces:
Integrator
public class GaussChebyshevQuadrature extends GaussianQuadrature
Gauss-Chebyshev Quadrature uses the following weighting function: \[ w(x) = \frac{1}{\sqrt{1 - x^2}} \] to evaluate integrals in the interval (-1, 1). Therefore, this method can be used for finding the integral \[ \int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx. \] This results in the evaluation points being roots of Chebyshev polynomials. In this method, both the coefficients and the evaluation points can be calculated directly.- See Also:
- Wikipedia: Chebyshev-Gauss quadrature
-
-
Constructor Summary
Constructors Constructor Description GaussChebyshevQuadrature(int n)
Create an integrator of order n.
-