Class QuasiPoisson
- java.lang.Object
-
- dev.nm.stat.regression.linear.glm.distribution.GLMPoisson
-
- dev.nm.stat.regression.linear.glm.quasi.family.QuasiPoisson
-
- All Implemented Interfaces:
GLMExponentialDistribution
,QuasiDistribution
public class QuasiPoisson extends GLMPoisson implements QuasiDistribution
This is the quasi Poisson distribution in GLM. The R equivalent function isquasipoisson
.
-
-
Constructor Summary
Constructors Constructor Description QuasiPoisson()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
quasiDeviance(double y, double mu)
the quasi-deviance function corresponding to a single observationdouble
quasiLikelihood(double mu, double y)
the quasi-likelihood function corresponding to a single observation Q(μ; y)-
Methods inherited from class dev.nm.stat.regression.linear.glm.distribution.GLMPoisson
AIC, cumulant, deviance, dispersion, overdispersion, theta, variance
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface dev.nm.stat.regression.linear.glm.distribution.GLMExponentialDistribution
AIC, cumulant, deviance, dispersion, overdispersion, theta, variance
-
-
-
-
Method Detail
-
quasiLikelihood
public double quasiLikelihood(double mu, double y)
Description copied from interface:QuasiDistribution
the quasi-likelihood function corresponding to a single observation Q(μ; y)- Specified by:
quasiLikelihood
in interfaceQuasiDistribution
- Parameters:
mu
- μy
- y- Returns:
- Q(μ; y)
- See Also:
- "P. J. MacCullagh and J. A. Nelder, Generalized Linear Models, 2nd ed. Chapter 9. Table 9.1. p.326."
-
quasiDeviance
public double quasiDeviance(double y, double mu)
Description copied from interface:QuasiDistribution
the quasi-deviance function corresponding to a single observation- Specified by:
quasiDeviance
in interfaceQuasiDistribution
- Parameters:
y
- ymu
- μ- Returns:
- D(y; μ;)
- See Also:
- "P. J. MacCullagh and J. A. Nelder, Generalized Linear Models, 2nd ed. Chapter 9. Eq. 9.4., the integral form, p.327."
-
-