Class CumulativeNormalHastings
- java.lang.Object
-
- dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
-
- dev.nm.analysis.function.rn2r1.univariate.AbstractUnivariateRealFunction
-
- dev.nm.analysis.function.special.gaussian.CumulativeNormalHastings
-
- All Implemented Interfaces:
Function<Vector,Double>
,RealScalarFunction
,UnivariateRealFunction
,StandardCumulativeNormal
public class CumulativeNormalHastings extends AbstractUnivariateRealFunction implements StandardCumulativeNormal
Hastings algorithm is faster but less accurate way to compute the cumulative standard Normal. It has a maximum absolute error less than 7.5e-8.- See Also:
- "Hastings, C., Jr. "Approximations for Digital Computers," Princeton University Press, Princeton, NJ. 1995."
- "Abramowitz, M., and Stegun, I.A, Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C. Reprinted by Dover, New York. 1964."
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
-
Constructor Summary
Constructors Constructor Description CumulativeNormalHastings()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
evaluate(double x)
Evaluate \(F(x;\,\mu,\sigma^2)\).-
Methods inherited from class dev.nm.analysis.function.rn2r1.univariate.AbstractUnivariateRealFunction
evaluate
-
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
-
-
-
Method Detail
-
evaluate
public double evaluate(double x)
Description copied from interface:StandardCumulativeNormal
Evaluate \(F(x;\,\mu,\sigma^2)\).- Specified by:
evaluate
in interfaceStandardCumulativeNormal
- Specified by:
evaluate
in interfaceUnivariateRealFunction
- Parameters:
x
- x- Returns:
- \(F(x;\,1,1)\)
-
-