Class ARIMAForecastMultiStep
- java.lang.Object
-
- dev.nm.stat.timeseries.linear.univariate.arima.ARIMAForecastMultiStep
-
public class ARIMAForecastMultiStep extends Object
Makes forecasts for a time series assuming an ARIMA model using the innovative algorithm.
-
-
Constructor Summary
Constructors Constructor Description ARIMAForecastMultiStep(IntTimeTimeSeries xt, ARIMAModel arima, int h)
Makes the h-step ahead prediction for an ARIMA model.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Vector
allForecasts()
Gets all the predictions of the next h steps in one vector.Vector
allMSEs()
Gets all the mean squared errors (MSE) of the h-step ahead predictions.double
var()
Gets the mean squared error of the h-step ahead prediction.double
xHat()
The next h-step ahead prediction.double
xShifted(int t)
Gets the shifted time series of observations.double
y(int t)
Gets the stationary arma series.
-
-
-
Constructor Detail
-
ARIMAForecastMultiStep
public ARIMAForecastMultiStep(IntTimeTimeSeries xt, ARIMAModel arima, int h)
Makes the h-step ahead prediction for an ARIMA model.- Parameters:
xt
- the observationsarima
- the ARIMA modelh
- a time step
-
-
Method Detail
-
y
public double y(int t)
Gets the stationary arma series.- Parameters:
t
- the time index, counting from 1- Returns:
y[t]
-
xShifted
public double xShifted(int t)
Gets the shifted time series of observations.- Parameters:
t
- the time index, counting from -(d-1)- Returns:
x[t]
-
xHat
public double xHat()
The next h-step ahead prediction.- Returns:
- the h-step ahead prediction
-
allForecasts
public Vector allForecasts()
Gets all the predictions of the next h steps in one vector.- Returns:
- all the predictions of the next h steps
-
var
public double var()
Gets the mean squared error of the h-step ahead prediction.- Returns:
- the mean squared error (variance)
- See Also:
- "eq. 9.5.6"
-
allMSEs
public Vector allMSEs()
Gets all the mean squared errors (MSE) of the h-step ahead predictions.- Returns:
- the mean squared errors (variance) of all h steps
-
-