Class BetaRegularizedInverse

  • All Implemented Interfaces:
    Function<Vector,​Double>, RealScalarFunction, UnivariateRealFunction

    public class BetaRegularizedInverse
    extends AbstractUnivariateRealFunction
    The inverse of the Regularized Incomplete Beta function is defined at: \[ x = I^{-1}_{(p,q)}(u), 0 \le u \le 1 \]

    The R equivalent function is qbeta.

    See Also:
    • "Amparo Gil, Javier Segura, and Nico M. Temme, "Section 10.5," Numerical Methods for Special Functions."
    • "John Maddock, Paul A. Bristow, Hubert Holin, and Xiaogang Zhang. "Notes for The Incomplete Beta Function Inverses," Boost Library."
    • "K. L. Majumder, and G. P. Bhattacharjee, Algorithm AS 63: The Incomplete Beta Integral, 1973."
    • "Cran, G. W., K. J. Martin, and G. E. Thomas, "Remark AS R19 and Algorithm AS 109," Applied Statistics, 26, 111-114, 1977, and subsequent remarks (AS83 and correction)."
    • Constructor Detail

      • BetaRegularizedInverse

        public BetaRegularizedInverse​(double p,
                                      double q)
        Construct an instance of \(I^{-1}_{(p,q)}(u)\) with parameters p and p.
        Parameters:
        p - p > 0
        q - q > 0
    • Method Detail

      • evaluate

        public double evaluate​(double u)
        Evaluate \(I^{-1}_{(p,q)}(u)\).
        Parameters:
        u - \(0 \le u \le 1\)
        Returns:
        \(I^{-1}_{(p,q)}(u)\)