Interface SubstitutionRule
-
- All Known Implementing Classes:
DoubleExponential
,DoubleExponential4HalfRealLine
,DoubleExponential4RealLine
,Exponential
,InvertingVariable
,MixedRule
,NoChangeOfVariable
,PowerLawSingularity
,StandardInterval
public interface SubstitutionRule
A substitution rule specifies \(x(t)\) and \(\frac{\mathrm{d} x}{\mathrm{d} t}\). We set /[ x = x(t) t = x^{-1}(x) = t(x) /] such that, /[ \int_{a}^{b} f(x)\,dx = \int_{t(a)}^{t(b)} f(x)x'(t)\, dt /]- See Also:
- Wikipedia: Integration by substitution
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description UnivariateRealFunction
dx()
the first order derivative of the transformation: x'(t) = dx(t)/dtdouble
ta()
Get the lower limit of the integral.double
tb()
Get the upper limit of the integral.UnivariateRealFunction
x()
the transformation: x(t)
-
-
-
Method Detail
-
x
UnivariateRealFunction x()
the transformation: x(t)- Returns:
- x(t)
-
dx
UnivariateRealFunction dx()
the first order derivative of the transformation: x'(t) = dx(t)/dt- Returns:
- x'(t) = dx(t)/dt
-
ta
double ta()
Get the lower limit of the integral.- Returns:
- the lower limit
-
tb
double tb()
Get the upper limit of the integral.- Returns:
- the upper limit
-
-