Package dev.nm.algebra.structure
Interface Ring<R>
-
- Type Parameters:
R
- a ring
- All Superinterfaces:
AbelianGroup<R>
,Monoid<R>
- All Known Subinterfaces:
Field<F>
,GenericMatrix<T,F>
,Matrix
,MatrixRing
,SparseMatrix
- All Known Implementing Classes:
BidiagonalMatrix
,BorderedHessian
,CauchyPolynomial
,ColumnBindMatrix
,Complex
,ComplexMatrix
,CongruentMatrix
,CorrelationMatrix
,CSRSparseMatrix
,DenseMatrix
,DiagonalMatrix
,DiagonalSum
,DOKSparseMatrix
,DPolynomial
,FastKroneckerProduct
,GenericFieldMatrix
,GivensMatrix
,GoldfeldQuandtTrotter
,Hessian
,HilbertMatrix
,ImmutableMatrix
,Inverse
,Jacobian
,KroneckerProduct
,LILSparseMatrix
,LowerTriangularMatrix
,MAT
,MatrixRootByDiagonalization
,MatthewsDavies
,OuterProduct
,PermutationMatrix
,Polynomial
,PositiveDefiniteMatrixByPositiveDiagonal
,PositiveSemiDefiniteMatrixNonNegativeDiagonal
,Pow
,PseudoInverse
,QuadraticMonomial
,Real
,RealMatrix
,ReturnsMatrix
,SampleCovariance
,ScaledPolynomial
,SimilarMatrix
,SubMatrixRef
,SymmetricKronecker
,SymmetricMatrix
,TridiagonalMatrix
,UpperTriangularMatrix
,VariancebtX
public interface Ring<R> extends AbelianGroup<R>, Monoid<R>
A ring is a set R equipped with two binary operations called addition and multiplication:
and+ : R × R → R
To qualify as a ring, the set and two operations, (R, +, ⋅), must satisfy the requirements known as the ring axioms.⋅ : R × R → R
- See Also:
- Wikipedia: Ring (mathematics)