Class TridiagonalMatrix
- java.lang.Object
-
- dev.nm.algebra.linear.matrix.doubles.matrixtype.dense.diagonal.TridiagonalMatrix
-
- All Implemented Interfaces:
Matrix,MatrixAccess,MatrixRing,MatrixTable,Densifiable,AbelianGroup<Matrix>,Monoid<Matrix>,Ring<Matrix>,Table,DeepCopyable
public class TridiagonalMatrix extends Object
A tri-diagonal matrix has non-zero entries only on the super, main and sub diagonals.- See Also:
- Wikipedia: Tridiagonal matrix
-
-
Constructor Summary
Constructors Constructor Description TridiagonalMatrix(double[][] data)Constructs a tri-diagonal matrix from a 3-row 2Ddouble[][]array such that: the first row is the super diagonal with (dim - 1) entries; the second row is the main diagonal with dim entries; the third row is the sub diagonal with (dim - 1) entries. For example,TridiagonalMatrix(int dim)Constructs a 0 tri-diagonal matrix of dimension dim * dim.TridiagonalMatrix(Matrix A)Casts a matrix to tridiagonal by copying the 3 diagonals (ignoring all other entries).TridiagonalMatrix(TridiagonalMatrix that)Copy constructor performing a deep copy.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Matrixadd(Matrix that)this + thatTridiagonalMatrixdeepCopy()The implementation returns an instance created fromthisby the copy constructor of the class, or justthisif the instance itself is immutable.booleanequals(Object obj)doubleget(int i, int j)Get the matrix entry at [i,j].VectorgetColumn(int j)Get the specified column in the matrix as a vector.DenseVectorgetDiagonal()Gets the main diagonal of the matrix.VectorgetRow(int i)Get the specified row in the matrix as a vector.DenseVectorgetSubDiagonal()Gets the sub-diagonal of the matrix.DenseVectorgetSuperDiagonal()Gets the super-diagonal of the matrix.inthashCode()Matrixminus(Matrix that)this - thatMatrixmultiply(Matrix that)this * thatVectormultiply(Vector v)Right multiply this matrix, A, by a vector.intnCols()Gets the number of columns.intnRows()Gets the number of rows.TridiagonalMatrixONE()Get an identity matrix that has the same dimension as this matrix.TridiagonalMatrixopposite()Get the opposite of this matrix.TridiagonalMatrixscaled(double scalar)Scale this matrix, A, by a constant.voidset(int i, int j, double value)Set the matrix entry at [i,j] to a value.TridiagonalMatrixt()Get the transpose of this matrix.DenseMatrixtoDense()Densify a matrix, i.e., convert a matrix implementation to the standard dense matrix,DenseMatrix.StringtoString()TridiagonalMatrixZERO()Get a zero matrix that has the same dimension as this matrix.
-
-
-
Constructor Detail
-
TridiagonalMatrix
public TridiagonalMatrix(int dim)
Constructs a 0 tri-diagonal matrix of dimension dim * dim.- Parameters:
dim- the dimension of the matrix
-
TridiagonalMatrix
public TridiagonalMatrix(double[][] data)
Constructs a tri-diagonal matrix from a 3-row 2Ddouble[][]array such that:- the first row is the super diagonal with (dim - 1) entries;
- the second row is the main diagonal with dim entries;
- the third row is the sub diagonal with (dim - 1) entries.
gives \[ \begin{bmatrix} 1 & 2 & 0 & 0 & 0\\ 3 & 4 & 5 & 0 & 0\\ 0 & 6 & 7 & 8 & 0\\ 0 & 0 & 9 & 10 & 11\\ 0 & 0 & 0 & 12 & 13 \end{bmatrix} \] We allownew double[][]{ {2, 5, 8, 11}, {1, 4, 7, 10, 13}, {3, 6, 9, 12} }nullinput when a diagonal is 0s. For example,
gives \[ \begin{bmatrix} 1 & 2 & 0 & 0 & 0\\ 0 & 4 & 5 & 0 & 0\\ 0 & 0 & 7 & 8 & 0\\ 0 & 0 & 0 & 10 & 11\\ 0 & 0 & 0 & 0 & 13 \end{bmatrix} \] The following is not allowed because the dimension cannot be determined.new double[][]{ {2, 5, 8, 11}, {1, 4, 7, 10, 13}, null }new double[][]{ null, null, null }- Parameters:
data- the 2D array input
-
TridiagonalMatrix
public TridiagonalMatrix(Matrix A)
Casts a matrix to tridiagonal by copying the 3 diagonals (ignoring all other entries).- Parameters:
A- the matrix
-
TridiagonalMatrix
public TridiagonalMatrix(TridiagonalMatrix that)
Copy constructor performing a deep copy.- Parameters:
that- a tri-diagonal matrix
-
-
Method Detail
-
deepCopy
public TridiagonalMatrix deepCopy()
Description copied from interface:DeepCopyableThe implementation returns an instance created fromthisby the copy constructor of the class, or justthisif the instance itself is immutable.- Returns:
- an independent (deep) copy of the instance
-
add
public Matrix add(Matrix that)
Description copied from interface:MatrixRingthis + that- Specified by:
addin interfaceAbelianGroup<Matrix>- Specified by:
addin interfaceMatrixRing- Parameters:
that- a matrix- Returns:
- the sum of
thisandthat
-
minus
public Matrix minus(Matrix that)
Description copied from interface:MatrixRingthis - that- Specified by:
minusin interfaceAbelianGroup<Matrix>- Specified by:
minusin interfaceMatrixRing- Parameters:
that- a matrix- Returns:
- the difference between
thisandthat
-
scaled
public TridiagonalMatrix scaled(double scalar)
Description copied from interface:MatrixScale this matrix, A, by a constant.- Parameters:
scalar- a double- Returns:
- cA
-
opposite
public TridiagonalMatrix opposite()
Description copied from interface:MatrixRingGet the opposite of this matrix.- Returns:
- -this
- See Also:
- Wikipedia: Additive inverse
-
t
public TridiagonalMatrix t()
Description copied from interface:MatrixRingGet the transpose of this matrix. This is the involution on the matrix ring.- Returns:
- the transpose of this matrix
-
ZERO
public TridiagonalMatrix ZERO()
Description copied from interface:MatrixRingGet a zero matrix that has the same dimension as this matrix.- Returns:
- the 0 matrix
-
ONE
public TridiagonalMatrix ONE()
Description copied from interface:MatrixRingGet an identity matrix that has the same dimension as this matrix. For a non-square matrix, it zeros out the rows (columns) with index > nCols (nRows).- Returns:
- an identity matrix
-
toDense
public DenseMatrix toDense()
Description copied from interface:DensifiableDensify a matrix, i.e., convert a matrix implementation to the standard dense matrix,DenseMatrix.- Specified by:
toDensein interfaceDensifiable- Returns:
- a matrix representation in
DenseMatrix
-
getDiagonal
public DenseVector getDiagonal()
Gets the main diagonal of the matrix.- Returns:
- the main diagonal
-
getSuperDiagonal
public DenseVector getSuperDiagonal()
Gets the super-diagonal of the matrix.- Returns:
- the super-diagonal
-
getSubDiagonal
public DenseVector getSubDiagonal()
Gets the sub-diagonal of the matrix.- Returns:
- the sub-diagonal
-
nRows
public int nRows()
Description copied from interface:TableGets the number of rows. Rows count from 1.
-
nCols
public int nCols()
Description copied from interface:TableGets the number of columns. Columns count from 1.
-
set
public void set(int i, int j, double value) throws MatrixAccessExceptionDescription copied from interface:MatrixAccessSet the matrix entry at [i,j] to a value. This is the only method that may change a matrix.- Specified by:
setin interfaceMatrixAccess- Parameters:
i- the row indexj- the column indexvalue- the value to set A[i,j] to- Throws:
MatrixAccessException- if i or j is out of range
-
get
public double get(int i, int j) throws MatrixAccessExceptionDescription copied from interface:MatrixAccessGet the matrix entry at [i,j].- Specified by:
getin interfaceMatrixAccess- Parameters:
i- the row indexj- the column index- Returns:
- A[i,j]
- Throws:
MatrixAccessException- if i or j is out of range
-
getRow
public Vector getRow(int i)
Description copied from interface:MatrixGet the specified row in the matrix as a vector.
-
getColumn
public Vector getColumn(int j)
Description copied from interface:MatrixGet the specified column in the matrix as a vector.
-
multiply
public Matrix multiply(Matrix that)
Description copied from interface:MatrixRingthis * that- Specified by:
multiplyin interfaceMatrixRing- Specified by:
multiplyin interfaceMonoid<Matrix>- Parameters:
that- a matrix- Returns:
- the product of
thisandthat
-
multiply
public Vector multiply(Vector v)
Description copied from interface:MatrixRight multiply this matrix, A, by a vector.
-
-