Package dev.nm.analysis.function.matrix
Class R2toMatrix
- java.lang.Object
-
- dev.nm.analysis.function.matrix.R2toMatrix
-
- All Implemented Interfaces:
Function<Vector,Matrix>,RntoMatrix
- Direct Known Subclasses:
MultivariateAutoCorrelationFunction,MultivariateAutoCovarianceFunction
public abstract class R2toMatrix extends Object implements RntoMatrix
This is a function that maps from R2 to a Matrix space. It takes two real arguments and outputs one matrix value. That is, /[ f(x_1, x_2) = A /]
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
-
Constructor Summary
Constructors Constructor Description R2toMatrix()
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description intdimensionOfDomain()Get the number of variables the function has.intdimensionOfRange()Get the dimension of the range space of the function.abstract Matrixevaluate(double x1, double x2)Evaluate f(x1, x2) = A.Matrixevaluate(Vector x)Evaluate the function f at x, where x is from the domain.
-
-
-
Method Detail
-
dimensionOfDomain
public int dimensionOfDomain()
Description copied from interface:FunctionGet the number of variables the function has. For example, for a univariate function, the domain dimension is 1; for a bivariate function, the domain dimension is 2.- Specified by:
dimensionOfDomainin interfaceFunction<Vector,Matrix>- Returns:
- the number of variables
-
dimensionOfRange
public int dimensionOfRange()
Description copied from interface:FunctionGet the dimension of the range space of the function. For example, for a Rn->Rm function, the dimension of the range is m.- Specified by:
dimensionOfRangein interfaceFunction<Vector,Matrix>- Returns:
- the dimension of the range
-
evaluate
public Matrix evaluate(Vector x)
Description copied from interface:FunctionEvaluate the function f at x, where x is from the domain.
-
evaluate
public abstract Matrix evaluate(double x1, double x2)
Evaluate f(x1, x2) = A.- Parameters:
x1-x1x2-x2- Returns:
f(x1, x2)
-
-