Package dev.nm.algebra.structure
Interface Monoid<G>
-
- Type Parameters:
G
- a monoid
- All Known Subinterfaces:
Field<F>
,GenericMatrix<T,F>
,Matrix
,MatrixRing
,Ring<R>
,SparseMatrix
- All Known Implementing Classes:
BidiagonalMatrix
,BorderedHessian
,CauchyPolynomial
,ColumnBindMatrix
,Complex
,ComplexMatrix
,CongruentMatrix
,CorrelationMatrix
,CSRSparseMatrix
,DenseMatrix
,DiagonalMatrix
,DiagonalSum
,DOKSparseMatrix
,DPolynomial
,FastKroneckerProduct
,GenericFieldMatrix
,GivensMatrix
,GoldfeldQuandtTrotter
,Hessian
,HilbertMatrix
,ImmutableMatrix
,Inverse
,Jacobian
,KroneckerProduct
,LILSparseMatrix
,LowerTriangularMatrix
,MAT
,MatrixRootByDiagonalization
,MatthewsDavies
,OuterProduct
,PermutationMatrix
,Polynomial
,PositiveDefiniteMatrixByPositiveDiagonal
,PositiveSemiDefiniteMatrixNonNegativeDiagonal
,Pow
,PseudoInverse
,QuadraticMonomial
,Real
,RealMatrix
,ReturnsMatrix
,SampleCovariance
,ScaledPolynomial
,SimilarMatrix
,SubMatrixRef
,SymmetricKronecker
,SymmetricMatrix
,TridiagonalMatrix
,UpperTriangularMatrix
,VariancebtX
public interface Monoid<G>
A monoid is a group with a binary operation (×), satisfying the group axioms:- closure
- associativity
- existence of multiplicative identity
- See Also:
- Wikipedia: Monoid
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description G
multiply(G that)
× : G × G → GG
ONE()
The multiplicative element 1 in the group such that for any elements a in the group, the equation 1 × a = a × 1 = a holds.
-