Class ODE
- java.lang.Object
-
- dev.nm.analysis.differentialequation.ode.ivp.problem.ODE
-
public class ODE extends Object
An ordinary differential equation (ODE) is an equation in which there is only one independent variable and one or more derivatives of a dependent variable with respect to the independent variable, so that all the derivatives occurring in the equation are ordinary derivatives. A (high order) ordinary differential equation of order n takes this form. \[ y^{(n)} = F(x,y,y',\ \dotsc,\ y^{(n-1)}) \]
-
-
Constructor Summary
Constructors Constructor Description ODE(RealScalarFunction F, double[] initials, double x0, double x1)
Construct an ODE of order n together with its initial values.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RealScalarFunction
F()
Get the differential, \(y^{(n)} = F\).double
x0()
Get the start point of the integrating interval [x0, x1].double
x1()
Get the end point of the integrating interval [x0, x1].double
y0(int order)
Get the initial value for the n-th order (derivative).
-
-
-
Constructor Detail
-
ODE
public ODE(RealScalarFunction F, double[] initials, double x0, double x1)
Construct an ODE of order n together with its initial values.- Parameters:
F
- y(n) = F(x, y, y', ..., y(n-1))initials
- y(x0), y'(x0), ..., y(n-1)(x0)x0
- the start point of the integrating interval [x0, x1]x1
- the end point of the integrating interval [x0, x1]
-
-
Method Detail
-
F
public RealScalarFunction F()
Get the differential, \(y^{(n)} = F\).- Returns:
- the differential
-
y0
public double y0(int order)
Get the initial value for the n-th order (derivative).- Parameters:
order
- the differentiation order- Returns:
- the initial value for the n-th order
-
x0
public double x0()
Get the start point of the integrating interval [x0, x1].- Returns:
- x0
-
x1
public double x1()
Get the end point of the integrating interval [x0, x1].- Returns:
- x1
-
-