Class AbstractBivariateProbabilityDistribution
- java.lang.Object
-
- dev.nm.stat.distribution.multivariate.AbstractBivariateProbabilityDistribution
-
- All Implemented Interfaces:
BivariateProbabilityDistribution,MultivariateProbabilityDistribution
- Direct Known Subclasses:
AbstractBivariateEVD
public abstract class AbstractBivariateProbabilityDistribution extends Object implements BivariateProbabilityDistribution
-
-
Constructor Summary
Constructors Constructor Description AbstractBivariateProbabilityDistribution()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description doublecdf(Vector x)Gets the cumulative probability F(x) = Pr(X ≤ x).doubledensity(Vector x)The density function, which, if exists, is the derivative of F.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface dev.nm.stat.distribution.multivariate.BivariateProbabilityDistribution
cdf, density
-
Methods inherited from interface dev.nm.stat.distribution.multivariate.MultivariateProbabilityDistribution
covariance, entropy, mean, mode, moment
-
-
-
-
Method Detail
-
cdf
public double cdf(Vector x)
Description copied from interface:MultivariateProbabilityDistributionGets the cumulative probability F(x) = Pr(X ≤ x).- Specified by:
cdfin interfaceMultivariateProbabilityDistribution- Parameters:
x- x- Returns:
- F(x) = Pr(X ≤ x)
-
density
public double density(Vector x)
Description copied from interface:MultivariateProbabilityDistributionThe density function, which, if exists, is the derivative of F. It describes the density of probability at each point in the sample space.f(x) = dF(X) / dx
This may not always exist. For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.- Specified by:
densityin interfaceMultivariateProbabilityDistribution- Parameters:
x- x- Returns:
- f(x)
-
-