Class MultivariateEulerSDE
- java.lang.Object
-
- dev.nm.stat.stochasticprocess.multivariate.sde.discrete.MultivariateEulerSDE
-
- All Implemented Interfaces:
MultivariateDiscreteSDE
public class MultivariateEulerSDE extends Object implements MultivariateDiscreteSDE
The Euler scheme is the first order approximation of an SDE. \[ dX_t = \mu * dt + \sigma * \sqrt{dt} * Z_t \]- See Also:
- Wikipedia: Euler-Maruyama method
-
-
Constructor Summary
Constructors Constructor Description MultivariateEulerSDE(MultivariateSDE sde)
Discretize a multivariate, continuous-time SDE using the Euler scheme.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Vector
dXt(MultivariateFt ft)
This is the SDE specification of a stochastic process.MultivariateFt
getNewFt()
Get an empty filtration of the process.int
nB()
Get the number of independent driving Brownian motions.
-
-
-
Constructor Detail
-
MultivariateEulerSDE
public MultivariateEulerSDE(MultivariateSDE sde)
Discretize a multivariate, continuous-time SDE using the Euler scheme.- Parameters:
sde
- a continuous-time SDE
-
-
Method Detail
-
dXt
public Vector dXt(MultivariateFt ft)
This is the SDE specification of a stochastic process. \(dX_t = \mu * dt + \sigma * \sqrt{dt} * Z_t\)- Specified by:
dXt
in interfaceMultivariateDiscreteSDE
- Parameters:
ft
- a filtration- Returns:
- the increment of the process in
dt
-
nB
public int nB()
Description copied from interface:MultivariateDiscreteSDE
Get the number of independent driving Brownian motions.- Specified by:
nB
in interfaceMultivariateDiscreteSDE
- Returns:
- the number of independent driving Brownian motions
-
getNewFt
public MultivariateFt getNewFt()
Description copied from interface:MultivariateDiscreteSDE
Get an empty filtration of the process.- Specified by:
getNewFt
in interfaceMultivariateDiscreteSDE
- Returns:
- an empty filtration
-
-