Class SamplePartialAutoCorrelation
- java.lang.Object
-
- dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
-
- dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
-
- dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
-
- dev.nm.stat.timeseries.linear.univariate.sample.SamplePartialAutoCorrelation
-
- All Implemented Interfaces:
Function<Vector,Double>
,BivariateRealFunction
,RealScalarFunction
public class SamplePartialAutoCorrelation extends AutoCorrelationFunction
This is the sample partial Auto-Correlation Function (PACF) for a univariate data set.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
-
Constructor Summary
Constructors Constructor Description SamplePartialAutoCorrelation(IntTimeTimeSeries xt)
Construct the sample PACF for a time series.SamplePartialAutoCorrelation(IntTimeTimeSeries xt, SampleAutoCovariance.Type type)
Construct the sample PACF for a time series.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
evaluate(double x1, double x2)
Evaluate y = f(x1,x2).double
evaluate(int lag)
Compute the partial auto-correlation for lagk
.-
Methods inherited from class dev.nm.stat.timeseries.linear.univariate.AutoCorrelationFunction
get
-
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractBivariateRealFunction
evaluate
-
Methods inherited from class dev.nm.analysis.function.rn2r1.AbstractRealScalarFunction
dimensionOfDomain, dimensionOfRange
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface dev.nm.analysis.function.Function
dimensionOfDomain, dimensionOfRange
-
-
-
-
Constructor Detail
-
SamplePartialAutoCorrelation
public SamplePartialAutoCorrelation(IntTimeTimeSeries xt, SampleAutoCovariance.Type type)
Construct the sample PACF for a time series.- Parameters:
xt
- a time seriestype
- the auto-covariance type
-
SamplePartialAutoCorrelation
public SamplePartialAutoCorrelation(IntTimeTimeSeries xt)
Construct the sample PACF for a time series.- Parameters:
xt
- a time series
-
-
Method Detail
-
evaluate
public double evaluate(double x1, double x2)
Description copied from interface:BivariateRealFunction
Evaluate y = f(x1,x2).- Parameters:
x1
- x1x2
- x2- Returns:
- f(x1, x2)
-
evaluate
public double evaluate(int lag)
Compute the partial auto-correlation for lagk
.- Parameters:
lag
- the lag order; it must be > 1- Returns:
- ρ(k)
-
-