Package dev.nm.algebra.structure
Interface Ring<R>
-
- Type Parameters:
R- a ring
- All Superinterfaces:
AbelianGroup<R>,Monoid<R>
- All Known Subinterfaces:
Field<F>,GenericMatrix<T,F>,Matrix,MatrixRing,SparseMatrix
- All Known Implementing Classes:
BidiagonalMatrix,BorderedHessian,CauchyPolynomial,ColumnBindMatrix,Complex,ComplexMatrix,CongruentMatrix,CorrelationMatrix,CSRSparseMatrix,DenseMatrix,DiagonalMatrix,DiagonalSum,DOKSparseMatrix,DPolynomial,FastKroneckerProduct,GenericFieldMatrix,GivensMatrix,GoldfeldQuandtTrotter,Hessian,HilbertMatrix,ImmutableMatrix,Inverse,Jacobian,KroneckerProduct,LILSparseMatrix,LowerTriangularMatrix,MAT,MatrixRootByDiagonalization,MatthewsDavies,OuterProduct,PermutationMatrix,Polynomial,PositiveDefiniteMatrixByPositiveDiagonal,PositiveSemiDefiniteMatrixNonNegativeDiagonal,Pow,PseudoInverse,QuadraticMonomial,Real,RealMatrix,ReturnsMatrix,SampleCovariance,ScaledPolynomial,SimilarMatrix,SubMatrixRef,SymmetricKronecker,SymmetricMatrix,TridiagonalMatrix,UpperTriangularMatrix,VariancebtX
public interface Ring<R> extends AbelianGroup<R>, Monoid<R>
A ring is a set R equipped with two binary operations called addition and multiplication:
and+ : R × R → R
To qualify as a ring, the set and two operations, (R, +, ⋅), must satisfy the requirements known as the ring axioms.⋅ : R × R → R- See Also:
- Wikipedia: Ring (mathematics)