Package dev.nm.analysis.function.matrix
Class R2toMatrix
- java.lang.Object
-
- dev.nm.analysis.function.matrix.R2toMatrix
-
- All Implemented Interfaces:
Function<Vector,Matrix>
,RntoMatrix
- Direct Known Subclasses:
MultivariateAutoCorrelationFunction
,MultivariateAutoCovarianceFunction
public abstract class R2toMatrix extends Object implements RntoMatrix
This is a function that maps from R2 to a Matrix space. It takes two real arguments and outputs one matrix value. That is, /[ f(x_1, x_2) = A /]
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface dev.nm.analysis.function.Function
Function.EvaluationException
-
-
Constructor Summary
Constructors Constructor Description R2toMatrix()
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description int
dimensionOfDomain()
Get the number of variables the function has.int
dimensionOfRange()
Get the dimension of the range space of the function.abstract Matrix
evaluate(double x1, double x2)
Evaluate f(x1, x2) = A.Matrix
evaluate(Vector x)
Evaluate the function f at x, where x is from the domain.
-
-
-
Method Detail
-
dimensionOfDomain
public int dimensionOfDomain()
Description copied from interface:Function
Get the number of variables the function has. For example, for a univariate function, the domain dimension is 1; for a bivariate function, the domain dimension is 2.- Specified by:
dimensionOfDomain
in interfaceFunction<Vector,Matrix>
- Returns:
- the number of variables
-
dimensionOfRange
public int dimensionOfRange()
Description copied from interface:Function
Get the dimension of the range space of the function. For example, for a Rn->Rm function, the dimension of the range is m.- Specified by:
dimensionOfRange
in interfaceFunction<Vector,Matrix>
- Returns:
- the dimension of the range
-
evaluate
public Matrix evaluate(Vector x)
Description copied from interface:Function
Evaluate the function f at x, where x is from the domain.
-
evaluate
public abstract Matrix evaluate(double x1, double x2)
Evaluate f(x1, x2) = A.- Parameters:
x1
-x1
x2
-x2
- Returns:
f(x1, x2)
-
-