Class SOCPDualProblem1.EqualityConstraints
- java.lang.Object
-
- dev.nm.solver.multivariate.constrained.convex.sdp.socp.problem.SOCPDualProblem1.EqualityConstraints
-
- All Implemented Interfaces:
Constraints
,EqualityConstraints
- Enclosing class:
- SOCPDualProblem1
public static class SOCPDualProblem1.EqualityConstraints extends Object implements EqualityConstraints
-
-
Constructor Summary
Constructors Constructor Description EqualityConstraints(Vector b, Matrix[] A, Vector[] c)
Constructs the equality constraints for a dual SOCP problem, \[ \max_y \mathbf{b'y} \textrm{ s.t.,} \\ \mathbf{{A^q}_i'y + s_i = c^q_i}, s_i \in K_i, i = 1, 2, ..., q \\ \mathbf{{A^{\ell}}^T y + z^{\ell} = c^{\ell}} \\ \mathbf{{A^{u}}^T y = c^{u}} \\ \]
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description int
dimension()
Get the number of variables.List<RealScalarFunction>
getConstraints()
Get the list of constraint functions.int
size()
Get the number of constraints.
-
-
-
Constructor Detail
-
EqualityConstraints
public EqualityConstraints(Vector b, Matrix[] A, Vector[] c)
Constructs the equality constraints for a dual SOCP problem, \[ \max_y \mathbf{b'y} \textrm{ s.t.,} \\ \mathbf{{A^q}_i'y + s_i = c^q_i}, s_i \in K_i, i = 1, 2, ..., q \\ \mathbf{{A^{\ell}}^T y + z^{\ell} = c^{\ell}} \\ \mathbf{{A^{u}}^T y = c^{u}} \\ \]- Parameters:
b
- \(b\)A
- \(A_i\)'sc
- \(c_i\)'s
-
-
Method Detail
-
getConstraints
public List<RealScalarFunction> getConstraints()
Description copied from interface:Constraints
Get the list of constraint functions.- Specified by:
getConstraints
in interfaceConstraints
- Returns:
- the list of constraint functions
-
dimension
public int dimension()
Description copied from interface:Constraints
Get the number of variables.- Specified by:
dimension
in interfaceConstraints
- Returns:
- the number of variables
-
size
public int size()
Description copied from interface:Constraints
Get the number of constraints.- Specified by:
size
in interfaceConstraints
- Returns:
- the number of constraints
-
-