Class LPCanonicalProblem2
- java.lang.Object
-
- dev.nm.solver.multivariate.constrained.convex.sdp.socp.qp.lp.problem.LPProblemImpl1
-
- dev.nm.solver.multivariate.constrained.convex.sdp.socp.qp.lp.problem.LPCanonicalProblem2
-
- All Implemented Interfaces:
LPProblem
,ConstrainedOptimProblem
,OptimProblem
public class LPCanonicalProblem2 extends LPProblemImpl1
This is a linear programming problem in the 2nd canonical form (following the convention in the wiki):min c'x
s.t.
b ≥ 0 if the problem is feasibleA * x ≤ b, x ≥ 0
- See Also:
- Wikipedia: Standard form
-
-
Constructor Summary
Constructors Constructor Description LPCanonicalProblem2(Vector c, Matrix A, Vector b)
Construct a linear programming problem in the canonical form.LPCanonicalProblem2(Vector cost, LinearLessThanConstraints less)
Construct a linear programming problem in the canonical form.LPCanonicalProblem2(LPCanonicalProblem1 problem)
Convert a linear programming problem from the 1st canonical form to the 2nd canonical form.
-
Method Summary
-
Methods inherited from class dev.nm.solver.multivariate.constrained.convex.sdp.socp.qp.lp.problem.LPProblemImpl1
A, Aeq, b, beq, c, dimension, f, getEqualityConstraints, getLessThanConstraints, isFree, nEqualities, nGreaterThanInequalities, toString
-
-
-
-
Constructor Detail
-
LPCanonicalProblem2
public LPCanonicalProblem2(Vector c, Matrix A, Vector b)
Construct a linear programming problem in the canonical form.- Parameters:
c
-c'x
is the linear objective function to be minimizedA
- the less-than inequality constraintsA * x ≤ b
b
- the less-than inequality valuesA * x ≤ b
-
LPCanonicalProblem2
public LPCanonicalProblem2(Vector cost, LinearLessThanConstraints less)
Construct a linear programming problem in the canonical form.- Parameters:
cost
- the objective functionless
- a collection of less-than-or-equal-to constraints
-
LPCanonicalProblem2
public LPCanonicalProblem2(LPCanonicalProblem1 problem)
Convert a linear programming problem from the 1st canonical form to the 2nd canonical form.- Parameters:
problem
- a linear programming problem in the 1st canonical form
-
-