public class WilcoxonRankSumDistribution extends Object implements ProbabilityDistribution
dwilcox, pwilcox, qwilcox, rwilcox.| Constructor and Description |
|---|
WilcoxonRankSumDistribution(int M,
int N)
Construct a Wilcoxon Rank Sum distribution for sample sizes
M and N. |
| Modifier and Type | Method and Description |
|---|---|
double |
cdf(double x)
Gets the cumulative probability F(x) = Pr(X ≤ x).
|
double |
density(double x)
The density function, which, if exists, is the derivative of F.
|
double |
entropy()
Deprecated.
|
double |
kurtosis()
Deprecated.
|
double |
mean()
Gets the mean of this distribution.
|
double |
median()
Deprecated.
|
double |
moment(double x)
Deprecated.
|
double |
pValue(double x)
Compute the two-sided p-value for a critical value.
|
double |
quantile(double u)
Gets the quantile, the inverse of the cumulative distribution function.
|
double |
rightOneSidedPvalue(double x)
Compute the one-sided p-value for the statistic greater than a critical value.
|
double |
skew()
Deprecated.
|
double |
variance()
Gets the variance of this distribution.
|
public WilcoxonRankSumDistribution(int M,
int N)
M and N.M - the number of observations in group 1N - the number of observations in group 2public double mean()
ProbabilityDistributionmean in interface ProbabilityDistribution@Deprecated public double median()
ProbabilityDistributionmedian in interface ProbabilityDistributionpublic double variance()
ProbabilityDistributionvariance in interface ProbabilityDistribution@Deprecated public double skew()
ProbabilityDistributionskew in interface ProbabilityDistribution@Deprecated public double kurtosis()
ProbabilityDistributionkurtosis in interface ProbabilityDistribution@Deprecated public double entropy()
ProbabilityDistributionentropy in interface ProbabilityDistributionpublic double cdf(double x)
ProbabilityDistributioncdf in interface ProbabilityDistributionx - xpublic double quantile(double u)
ProbabilityDistributionThis may not always exist.F-1(u) = x, such that Pr(X ≤ x) = u
quantile in interface ProbabilityDistributionu - u, a quantilepublic double density(double x)
ProbabilityDistributionf(x) = dF(X) / dxThis may not always exist. For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.
density in interface ProbabilityDistributionx - x@Deprecated public double moment(double x)
ProbabilityDistributionE(etX)This may not always exist.
moment in interface ProbabilityDistributionx - tpublic double rightOneSidedPvalue(double x)
x - a critical valuepublic double pValue(double x)
x - a critical valueCopyright © 2010-2020 NM FinTech Ltd.. All Rights Reserved.