Modifier and Type | Field and Description |
---|---|
List<Integer>[] |
bins
bin allocation; the j(kappa) defined between equations 33 and 34 in
paper 2016
|
double |
c
n=c/p
|
List<Complex>[] |
dis_m_LF_list
whole m_LF_zxi_list(including the modified Stieltjes transform of
endpoints)
|
Vector |
estimated_lambda
estimated lambda
|
List<Double>[] |
F
unique dis_G_list
|
List<Integer>[] |
F_idx
indices for dis_G_list which is unique
|
int |
K
number of distinct population eigenvalues bigger than 0; the length
of t
|
Matrix |
lambda_Jacobian
lambda Jacobian
|
double |
n
sample size
|
List<Integer> |
nidx
number of unique values in dis_G_list
|
List<Integer> |
nquant
number of points we select between in F[i]
|
int |
numint
number of intervals
|
double |
p
number of variables
|
Vector |
pw
number of each distinct eigenvalues
|
double |
pzw
number of eigenvalues that are less or equals to zero
|
List<Double>[] |
quant
point indices in F[i]; kappa index
|
Vector |
t
distinct population eigenvalues
|
Vector |
tau
population eigenvalues in ascending order
|
List<Double>[] |
x_F
transform zeta_list back from abscissa; it is same as whole_x_list;
just follow the R code.
|
public final double n
public final double p
public final double c
public final double pzw
public final Vector tau
public final Vector t
public final Vector pw
public final int K
public final int numint
public final List<Complex>[] dis_m_LF_list
public final List<Double>[] x_F
public final List<Integer>[] bins
public final Vector estimated_lambda
public final Matrix lambda_Jacobian
Copyright © 2010-2020 NM FinTech Ltd.. All Rights Reserved.