public class WilcoxonRankSumDistribution extends Object implements ProbabilityDistribution
dwilcox, pwilcox, qwilcox, rwilcox
.Constructor and Description |
---|
WilcoxonRankSumDistribution(int M,
int N)
Construct a Wilcoxon Rank Sum distribution for sample sizes
M and N . |
Modifier and Type | Method and Description |
---|---|
double |
cdf(double x)
Gets the cumulative probability F(x) = Pr(X ≤ x).
|
double |
density(double x)
The density function, which, if exists, is the derivative of F.
|
double |
entropy()
Deprecated.
|
double |
kurtosis()
Deprecated.
|
double |
mean()
Gets the mean of this distribution.
|
double |
median()
Deprecated.
|
double |
moment(double x)
Deprecated.
|
double |
pValue(double x)
Compute the two-sided p-value for a critical value.
|
double |
quantile(double u)
Gets the quantile, the inverse of the cumulative distribution function.
|
double |
rightOneSidedPvalue(double x)
Compute the one-sided p-value for the statistic greater than a critical value.
|
double |
skew()
Deprecated.
|
double |
variance()
Gets the variance of this distribution.
|
public WilcoxonRankSumDistribution(int M, int N)
M
and N
.M
- the number of observations in group 1N
- the number of observations in group 2public double mean()
ProbabilityDistribution
mean
in interface ProbabilityDistribution
@Deprecated public double median()
ProbabilityDistribution
median
in interface ProbabilityDistribution
public double variance()
ProbabilityDistribution
variance
in interface ProbabilityDistribution
@Deprecated public double skew()
ProbabilityDistribution
skew
in interface ProbabilityDistribution
@Deprecated public double kurtosis()
ProbabilityDistribution
kurtosis
in interface ProbabilityDistribution
@Deprecated public double entropy()
ProbabilityDistribution
entropy
in interface ProbabilityDistribution
public double cdf(double x)
ProbabilityDistribution
cdf
in interface ProbabilityDistribution
x
- xpublic double quantile(double u)
ProbabilityDistribution
This may not always exist.F-1(u) = x, such that Pr(X ≤ x) = u
quantile
in interface ProbabilityDistribution
u
- u
, a quantilepublic double density(double x)
ProbabilityDistribution
f(x) = dF(X) / dxThis may not always exist. For the discrete cases, this is the probability mass function. It gives the probability that a discrete random variable is exactly equal to some value.
density
in interface ProbabilityDistribution
x
- x@Deprecated public double moment(double x)
ProbabilityDistribution
E(etX)This may not always exist.
moment
in interface ProbabilityDistribution
x
- tpublic double rightOneSidedPvalue(double x)
x
- a critical valuepublic double pValue(double x)
x
- a critical valueCopyright © 2010-2020 NM FinTech Ltd.. All Rights Reserved.