Package | Description |
---|---|
dev.nm.algebra.linear.matrix.doubles.linearsystem | |
dev.nm.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner |
Modifier and Type | Method and Description |
---|---|
Preconditioner |
LSProblem.getLeftPreconditioner()
Gets the left preconditioner.
|
Preconditioner |
LSProblem.getRightPreconditioner()
Gets the right preconditioner.
|
Modifier and Type | Method and Description |
---|---|
LSProblem |
LSProblem.withLeftPreconditioner(Preconditioner preconditioner)
Overrides the left preconditioner.
|
LSProblem |
LSProblem.withRightPreconditioner(Preconditioner preconditioner)
Overrides the right preconditioner.
|
Modifier and Type | Class and Description |
---|---|
class |
IdentityPreconditioner
This identity preconditioner is used when no preconditioning is applied.
|
class |
JacobiPreconditioner
The Jacobi (or diagonal) preconditioner is one of the simplest forms of
preconditioning, such that the preconditioner is the diagonal of
the coefficient matrix, i.e., P = diag(A).
|
class |
SSORPreconditioner
SSOR preconditioner is derived from a symmetric coefficient matrix A
which is decomposed as
A = D + L + Lt
The SSOR preconditioning matrix is defined as
M = (D + L)D-1(D + L)t
or, parameterized by ω
M(ω) = (1/(2 - ω))(D / ω + L)(D / ω)-1(D / ω + L)t
|
Modifier and Type | Method and Description |
---|---|
Preconditioner |
PreconditionerFactory.newInstance(Matrix A)
Construct a new instance of
Preconditioner for a coefficient matrix. |
Copyright © 2010-2020 NM FinTech Ltd.. All Rights Reserved.